Нормальное содержание кислорода в воздухе. Проблема загрязнения свежего воздуха. Как образовалась земная атмосфера

Состав воздуха на земле – одна из причин нашей жизни. Без воздуха человек проживет всего лишь три минуты, а через 10 наступит клиническая смерть.

Пока мы дышим, мы живем. Ни на одной планете в солнечной системе нет настолько тесной связи между химией и биологией. Наш мир уникален.

В зависимости от территории объем главного компонента жизненно необходимого газа составляет от 16 до 20 процентов – это кислород, формула которого O 2. Его вариация ощущается в пространстве как «свежесть» после грозы – это озон O 3 .

Из этой статьи вы узнаете все тайны воздушной оболочки земли. Что произойдет с миром без одного компонента? Какой вред может нанести? Как на жизнь повлияет незначительное ухудшение атмосферы?

Что такое воздух

Древние греки использовали два слова в качестве определения для воздуха: аир, что означало нижние слои атмосферы (Дим), а эфир означал яркие верхние слои атмосферы (заоблачное пространство).

В алхимии символ воздуха – это треугольник, разделенный надвое горизонтальной линией.

В современном мире, ему подошло бы такое определение – газовая смесь, окружающая планету, которая защищает от проникновения радиации солнца и больших доз ультрафиолета.

За многомиллионный период развития планета преобразовала газовые вещества и создала уникальный защитный щит, увидеть который практически невозможно. Массовая доля их несоизмеримо мала для космоса.

Ничто больше не оказывает влияние на мирообразование. Если вспомнить, что часть воздушных масс – это кислород, то, что произойдет на земле без него? Здания и сооружения рухнут.

Металлические мосты и прочие конструкции, завораживающие миллионы туристов, превратятся в единой ком из-за малого количества молекул кислорода (в данной ситуации близкой к нулю). Ухудшится жизнь всех живых организмов на планете, а некоторых приведет к смерти.

Моря и океаны, испаряясь в виде водорода, исчезнут. И когда планета станет похожей на Луну, воцарится радиационный пожар, выжигающий остатки флоры, поскольку без кислорода температура очень сильно увеличится, а вот без атмосферы не будет защиты от солнца.

Из чего состоит воздух

Почти вся земная атмосфера состоит только из пяти газов: азота, кислорода, водяного пара, аргона и углекислого газа.

Другие смеси в ней тоже присутствуют, но ради чистоты представления химический состав водяного пара рассматриваться не будет. Стоит упомянуть, что в воздушной массе он занимает не более пяти процентов.

Состав воздуха в процентах


В идеале собранный в банку воздух состоит на:

  • 78 процентов из азота;
  • 16 — 20 процентов кислорода;
  • 1 процента аргона;
  • три сотых процента углекислого газа;
  • одну тысячную процента неона;
  • 0,0002 процента метана .

Более мелкие компоненты это:

  • гелий - 0,000524%;
  • криптон - 0,000114%;
  • водород — Н2 0,00005%;
  • ксенон - 0,0000087%;
  • озон О 3 - 0,000007%;
  • диоксид азота - 0,000002%;
  • йод - 0,000001%;
  • монооксид углерода;
  • аммиак.

Состав вдыхаемого и выдыхаемого воздуха

Дыхание преобладает над прочими потребностями человека. Из школьного курса каждому известно, что человек вдыхает кислород, а выдыхает углекислый газ. Хотя в жизни в воздухе кроме чистого O 2 присутствует другие вещества.

Вдох — выдох. Подобный цикл повторяется порядка 22000 раз в день в процессе чего потребляется кислород, который поддерживает жизнеспособность человеческого тела. Проблема в том, что нежная легочная ткань подвергается нападению со стороны загрязнения воздуха, чистящих растворов, волокон, паров и пыли.

В первой половине статьи говорилось про сокращение кислорода, но что будет при увеличении. Двукратная концентрация основного газа привела бы к сокращению потребляемого топлива в автомобилях.

Вдыхая больше кислорода, человек стал бы намного психологически позитивнее. Однако, некоторым насекомым благоприятный климат позволил бы увеличиться в размерах. Есть ряд теорий, прогнозирующих это. Думается, что никто не хотел бы встретиться с пауком размером с собаку, а про рост крупных представителей можно только фантазировать.

Вдыхая меньше тяжелых металлов, человечество смогло бы победить ряд сложных заболеваний, но такой проект потребует много сил. Есть целая программа, направленная на создание практического рая на земле: в каждом доме, в комнате, городе или стране. Ее цель сделать атмосферу чище, избавить людей от опасной работы в шахтах и металлургии. Место, где рабочие места заняли бы мастера своего дела.

Важно, что вдыхать чистый, не тронутый промышленностью воздух можно, но для этого нужна политическая, а лучше мировая воля. А пока люди заняты поисками денег и дешевых (грязных) технологий, остается вдыхать только городской смог. Как долго подобное продлится неизвестно.

Наглядно оценить атмосферный воздух столицы нашей родины, который вдыхает не один десяток людей, позволит карта.

Гигиеническое значение атмосферного воздуха

Официально, загрязнение воздуха может быть определено как содержание вредных веществ в воздухе либо частиц или микроскопических биологических молекул, которые представляют опасность для здоровья живых организмов: людей, животных или растений.

Уровень загрязнения воздуха в конкретном месте зависит главным образом от источника или источников загрязнения. Сюда входят:

  • выхлопные газы автомобилей;
  • угольные электростанции;
  • промышленные заводы и другие источники загрязнения.

Все перечисленное извергает в воздух различные типы опасных веществ и токсинов, превышая нормы в десятки, а порой сотни раз. В сочетании с природными источниками – вулканы , гейзеры и прочее – создается смертоносный коктейль ядовитых воздушных масс, который привычно называют «смогом».

Доказательства вины каждого человека очевидны. Наш персональный выбор и промышленность могут оказать пагубное влияние на столь необходимый газ. За век технологического рывка природа успела пострадать, а значит отмщение неизбежно.

Увеличивая выбросы, человечество приближается к пропасти, возврата из которой нет и быть не может. Пока не поздно, следует исправить хоть что-то. Доказано, что альтернативные промышленные технологии могут помочь очистить воздух в Москве, Петербурге, Токио, Берлине и любом ином крупном городе.

Вот некоторые пути решения:

  1. Замените бензин электричеством в автомобилях, и небо над городом станет чуть прекрасней.
  2. Убрать из городов угольные станции, пусть они уйдут в историю страны, начать использовать энергию солнца, воды, ветра. Тогда после дождя не полетит сажа из трубы очередного завода, а будет только запах «свежести».
  3. Посадите дерево в парке. Если подобное сделают тысячи, то больницы перестанут посещать астматики и депрессивные люди в поисках уникального рецепта из уст психолога.

Указанное в таблице соотношение газов в земной воздухе характерно для её нижних слоёв, до высоты 120 км. В этих регионах лежит прекрасно перемешанная, однородная по составу область, именуемая гомосферой. Выше гомосферы лежит гетеросфера, для которой характерно разложение молекул газов на атомы и ионы.

Области отделены друг от друга турбопаузой.

Химическая реакция, при которой под действием солнечного и космического излучения происходит разложение молекул на атомы, именуется фотодиссоциацией. При распаде молекулярного кислорода образуется атомарный кислород, являющийся главным газом воздуха на высотах более чем 200 км. На высотах от 1200 км начинают преобладать водород и гелий, являющиеся самые лёгкими из газов.

Потому, что главная масса воздуха сосредоточена в 3 нижних атмосферных слоях, трансформации состава воздуха на высотах более 100 км не оказывают заметного влияния на неспециализированный состав воздуха.

Азот - самый популярный газ, на долю которого приходится более трёх четвертей количества земного воздуха. Современный азот появился при окислении ранней аммиачно-водородной воздуха молекулярным кислородом, что образуется в ходе фотосинтеза.

На данный момент маленькое количество азота в воздух поступает в следствии денитрификации - процесса восстановления нитратов до нитритов, с последующим образованием газообразных молекулярного азота и оксидов, что производится анаэробными прокариотами. Часть азота в воздух поступает при вулканических извержениях.

В верхних слоях воздуха при действии электрических разрядов при участии озона молекулярный азот окисляется до монооксида азота:

В простых условиях монооксид в тот же час же вступает в реакцию с кислородом с образованием закиси азота:

Азот есть наиболее значимым химическим элементом земной атмосферы. Азот входит в состав белков, снабжает минеральное питание растений. Он определяет скорость химических реакций, играет роль разбавителя кислорода.

Вторым по распространённости газом воздуха Почвы есть кислород. Образование этого газа связывают с фотосинтезирующей деятельностью бактерий и растений. И чем более разнообразными и бессчётными становились фотосинтезирующие организмы, тем более большим становился процесс содержания кислорода в воздухе.

Маленькое количество тяжёлого кислорода выделяется при дегазации мантии.

В верхних слоях стратосферы и тропосферы под действием ультрафиолетового солнечного излучения (обозначим его как h?) образуется озон:

В следствии действия того же ультрафиолетового излучения происходит и распад озона:

О3 + h? О2 + О

В следствии первой реакции образуется атомарный кислород, в следствии второй - молекулярный кислород. Все 4 реакции носят название «механизм Чепмена», по имени английского учёного Сидни Чепмена открывшего их в первой половине 30-ых годов двадцатого века.

Кислород помогает для дыхания живых организмов. С его помощью происходят горения и процессы окисления.

Озон помогает для защиты живых организмов от ультрафиолетового излучения, которое приводит к необратимым мутациям. Громаднейшая концентрация озона отмечается в нижней стратосфере в пределах т.н. озонового слоя либо озонового экрана, лежащего на высотах

Образование третьего по распространенности в воздухе газа аргона, и неона, гелия, ксенона и криптона связывают с распадом и вулканическими извержениями радиоактивных элементов.

В частности гелий есть продуктом радиоактивного распада урана, радия и тория: 238 U 234 Th + ?, 230 Th 226 Ra + 4 He, 226 Ra 222 Rn + ? (в этих реакция?-частица есть ядром гелия, которая в ходе утраты энергии захватывает электроны и делается 4 He).

Аргон образуется в ходе распада радиоактивного изотопа калия: 40 K 40 Ar + ?.

Неон улетучивается из изверженных пород.

Криптон образуется как конечный продукт распада урана (235 U и 238 U) и тория Th.

Главная масса атмосферного криптона появилась ещё на ранних стадиях эволюции Почвы как следствие распада трансурановых элементов с феноменально малым периодом полураспада либо поступила из космоса, содержание криптона в котором в десять миллионов раз выше чем на Земле.

Ксенон результат деления урана, но главная масса этого газа осталась с ранних стадий образования Почвы, от первичной воздуха.

Углекислый газ поступает в воздух в следствии вулканических извержений и в ходе разложения органического вещества. Его содержание в воздухе средних широт Почвы очень сильно различается в зависимости от сезонов года: зимний период количество CO2 возрастает, а летом - понижается. Связано данное колебание с деятельностью растений, каковые применяют углекислый газ в ходе фотосинтеза.

Водород образуется в следствии разложения воды солнечным излучением. Но, будучи самым лёгким из газов, входящих в состав воздуха, всегда улетучивается в космическое пространство, и потому содержание его в воздухе весьма мало.

Пар результат испарения воды с поверхности озёр, рек, морей и суши.

Концентрация главных газов в нижних слоях воздуха, за исключением водяных паров и углекислого газа, постоянна. В маленьких количествах в воздухе находятся оксид серы SO2. аммиак NH3. монооксид углерода СО, озон O3. хлороводород HCl, фтороводород HF, монооксид азота какое количество, углеводороды, пары ртути Hg, йода I2 и многие другие. В нижнем атмосферном слое тропосфере всегда находится много взвешенных жёстких и жидких частиц.

Источниками жёстких частиц в воздухе Почвы являются вулканические извержения, пыльца растений, микробы, а сейчас и деятельность человека, к примеру, сжигание ископаемого горючего в ходе производства. Небольшие частицы пыли, каковые являющиеся ядрами конденсации, являются причинами образования туманов и туч. Без жёстких частиц, неизменно присутствующих в воздухе, на Землю не выпадали бы осадки.

ВОЗДУХ – смесь газов, образующая атмосферу, оболочку вокруг земного шара, обусловливающую возможность жизни на Земле животных и растительных организмов.

Воздух состоит в основном из смеси азота (78,09% по объему) и кислорода (20,95% по объему); на долю всех остальных газов приходится около 1%. Важнейшей составной частью воздуха является кислород, играющий основную роль в поддержании жизни на Земле. В процессе жизнедеятельности животные организмы непрерывно потребляют кислород. Пополнение запасов кислорода В. происходит за счет продуцирования его растениями, зеленые части которых в процессе фотосинтеза поглощают на свету углекислый газ и используют его углерод для образования органических веществ, выделяя при этом в воздух свободный кислород. Таким образом, в природе происходит кругооборот кислорода, в процессе которого одновременно с большим расходом кислорода происходит полное восстановление его количества.

Человек вдыхает за сутки 20-30 м куб. воздуха. Потребность человека в кислороде зависит от интенсивности трудовой деятельности; в покое эта потребность составляет 25 л в час. Снижение содержания кислорода в воздухе до 16-18% не оказывает заметного влияния на организм человека; снижение до 14% уже сопровождается явлениями кислородной недостаточности, а снижение до 9% опасно для жизни. Однако основное биологическое значение имеет не процентное содержание кислорода в воздухе, а его парциальное (частичное) давление, то есть та часть общего атмосферного давления, которая приходится на его долю, так как переход кислорода из воздуха, содержащегося в альвеолах легких, в кровь и ткани основан на разнице его парциального давления. Наиболее полно этот переход осуществляется при парциальном давлении кислорода в атмосферном воздухе, равном 150- 159 мм, которое обычно имеет место при атмосферном давлении 760 мм. Парциальное давление кислорода в альвеолярном воздухе ниже, чем в атмосферном воздухе: при парциальном давлении кислорода в атмосферном воздухе, равном 159 мм, в альвеолярном воздухе оно составляет только 105 мм. Понижение парциального давления кислорода воздуха влечет за собой нарушение дыхательного процесса, снижение легочного и тканевого газообмена, обеднение крови и тканей кислородом. При понижении парциального давления кислорода в атмосферном воздухе до 130-140 мм (в альвеолярном воздухе соответственно до 80-85 мм) уже может возникать ряд нарушений – одышка, учащение и увеличение глубины дыхания, учащение сердце биений, ускорение тока крови и другие, которые носят компенсаторный характер. При дальнейшем снижении парциального давления кислорода до 110 мм (в альвеолярном воздухе – около 62 мм) компенсаторные возможности организма оказываются уже недостаточными и возникают явления кислородной недостаточности (так называемая гипоксемия, гипоксия). Дальнейшее снижение парциального давления кислорода до 50-60 мм (в альвеолярном воздухе до 20-25 мм) может привести к смерти. Дефицит кислорода можно компенсировать употребляя кислородный коктейль. Приготовление кислородного коктейля производят с помощью различных аппаратов, в том числе концентратор кислорода , кислородные миксеры, ароматические станции, пенообразователи и многие другие.

Понижение парциального давления кислорода отмечается с подъемом на высоту. Поэтому при подъемах на горы или на самолете с негерметизированной кабиной у малотренированных и неакклиматизированных людей может развиться так называемая высотная болезнь. Значительно легче организм переносит повышение содержания кислорода во вдыхаемом воздухе. Экспериментальные животные переносят содержание кислорода в воздухе 40-60% в течение длительного срока без каких-либо заметных проявлений и нарушений в состоянии организма. При водолазных работах дыхание воздухом, содержащим до 50% кислорода, также переносится без вредных последствий.

При высоком парциальном давлении кислорода (около 1 атм) и длительном вдыхании его развивается отек и воспаление легких.

Второй важной составной частью воздуха является азот. Он относится к инертным газам и не способен поддерживать дыхание и горение. Однако азот играет важную роль как разбавитель кислорода в атмосферном воздухе, обеспечивая благоприятную для поддержания нормального дыхания животных и человека концентрацию кислорода в воздухе. Наилучшие условия для жизни создаются при содержании в воздухе азота 78,09% (по объему) и кислорода 20,95%. При увеличении содержания азота в воздухе до 83% отмечаются первые признаки недостаточности кислорода. Азот при повышенном парциальном его давлении во вдыхаемом воздухе обладает наркотическим действием (при парциальном давлении азота 30-40 атм наступает полный наркоз). Изучение токсического действия азота у водолазов при глубоководных спусках показало, что при дыхании обыкновенным воздухом под давлением 9 атм и более отмечается ряд расстройств. Азот растворяется в крови и тканях организма в количествах, пропорциональных его парциальному давлению. При быстром переходе человека от повышенного давления к низкому избыток азота выделяется из тканей и крови в виде пузырьков газа, что является причиной так называемой кессонной болезни.

Постоянной составной частью воздуха является углекислый газ (CO2). Углекислый газ участвует в круговороте углерода; он поглощается в большом количестве растениями. Однако количество его в воздухе остается постоянным за счет поступления из почвы, в составе промышленных газов и дыма, за счет дыхания людей и животных. Человек в покое за 1 час выдыхает 22,6 л CO2. Наибольшее количество CO2 содержится в воздухе крупных промышленных городов. Наименьшее количество - над водной поверхностью океанов и морей. Регулирующее влияние на содержание СO2 в атмосферном воздухе оказывает вода морей и океанов, которая в зависимости от величины парциального давления кислорода воздуха и температуры отдает или поглощает СO2 из атмосферного воздуха. Физиологическое значение углекислого газа заключается в его возбуждающем действии на дыхательный центр. Так как в процессе жизнедеятельности в организме образуется углекислый газ в количестве, достаточном для создания в крови необходимого парциального давления СO2, обеспечивающего нормальное течение дыхательного процесса, то понижение содержания углекислого газа в атмосферном воздухе не имеет существенного значения. Повышение же концентрации СO2 в воздухе сказывается на состоянии организма: при содержании в воздухе 3-4% СO2 дыхание ускоряется и углубляется, появляется головная боль, шум в ушах, замедление пульса, повышение кровяного давления и другое, при повышении концентрации СO2 в воздухе до 10% может наступить потеря сознания и смерть. Механизм действия высоких концентраций СO2 аналогичен действию кислородной недостаточности. Гигиенической нормой содержания СO2 в воздухе жилых и общественных помещениях принято считать 0,1%. Углекислый газ принято рассматривать как показатель загрязнения воздуха в помещениях.

Из других газов воздуха необходимо отметить озон (O3), который относится к активным газам, оказывающим влияние на здоровье человека. Однако естественное содержание озона у поверхности земли ничтожно и не представляет какой-либо опасности для здоровья. Наибольшие количества озона сосредоточиваются в атмосфере на высоте 25-30 км. Озон играет важную роль в защите от вредного действия коротких волн солнечной радиации, а также обладает способностью задерживать тепло, исходящее от земли и, таким образом, в некоторой степени препятствует охлаждению земной поверхности.

В воздухе могут находиться в виде примесей и другие газы, в том числе и вредные (сероводород, сернистый газ, аммиак, окись углерода и другие), что чаще всего имеет место вблизи промышленных предприятий. Среди примесей, загрязняющих воздух, первое место принадлежит пыли . Мероприятия по санитарной охране воздуха направлены к всемерному снижению содержания в воздухе этих вредных примесей.
Помимо состава воздуха, существенное значение для нормальной жизнедеятельности человека имеют также физические свойства воздуха: температура, влажность, подвижность, которые оказывают комбинированное действие на организм, увеличивая или уменьшая его теплоотдачу. Наиболее благоприятная для человека температура воздуха 18-20°. Чем тяжелей выполняемая человеком работа, тем ниже должна быть температура воздуха. Человек легко переносит колебания температуры, вследствие свойственной ему способности к .

Большое значение для нормального самочувствия человека имеет влажность воздуха. Наиболее благоприятна для человека относительная влажность воздуха 40-60%. Сухой воздух переносится человеком хорошо, высокая влажность действует крайне неблагоприятно: при высокой температуре воздуха она способствует перегреву организма, так как затрудняет испарение пота, а при низких температурах способствует его переохлаждению, так как влажный воздух отличается высокой теплопроводностью. Человек очень чувствителен к движению воздуха, вызывающему усиление теплоотдачи организма. При низких температурах ветер способствует быстрому переохлаждению тела. При высокой температуре или интенсивном солнце ветер предохраняет от перегрева, улучшает самочувствие.

В воздухе могут содержаться микроорганизмы, в том числе и болезнетворные. Загрязненный ими воздух может способствовать распространению некоторых заразных болезней, особенно так называемых капельных инфекций (грипп, дифтерия, корь, скарлатина, коклюш и другие), возбудители которых больной человек выделяет с капельками слюны и слизи при кашле, чихании, разговоре.

Необходимо всегда следить за чистотой воздуха в помещении: систематически мыть полы, проветривать комнаты путем устройства сквозняков, тщательно выколачивать пыль из мягкой мебели, ковров, портьер, постельных принадлежностей и одежды не реже одного раза в неделю.

Газовый состав атмосферного воздуха

Газовый состав воздуха, которым мы дышим, выглядит так: 78% составляет азот, 21 % - кислород и 1% приходится на другие газы. Но в атмосфере крупных промышленных городов это соотношение часто нарушено. Значительную долю составляют вредные примеси, обусловленные выбросами предприятий и автотранспорта. Автотранспорт привносит в атмосферу многие примеси: углеводороды неизвестного состава, бенз(а)пирен, углекислый газ, соединения серы и азота, свинец, угарный газ.

Атмосфера состоит из смеси ряда газов - воздуха, в котором взвешены коллоидные примеси - пыль, капельки, кристаллы и пр. С высотой состав атмосферного воздуха меняется мало. Однако начиная с высоты около 100 км, наряду с молекулярным кислородом и азотом появляется и атомарный в результате диссоциации молекул, и начинается гравитационное разделение газов. Выше 300 км в атмосфере преобладает атомарный кислород, выше 1000 км - гелий и затем атомарный водород. Давление и плотность атмосферы убывают с высотой; около половины всей массы атмосферы сосредоточено в нижних 5 км, 9/10 - в нижних 20 км и 99,5% - в нижних 80 км. На высотах около 750 км плотность воздуха падает до 10-10 г/м3 (тогда как у земной поверхности она порядка 103 г/м3), но и такая малая плотность еще достаточна для возникновения полярных сияний. Резкой верхней границы атмосфера не имеет; плотность составляющих ее газов

В состав атмосферного воздуха, которым дышит каждый из нас, входят несколько газов, основными из которых являются: азот(78.09%), кислород(20.95%), водород(0.01%) двуокись углерода (углекислый газ)(0.03%) и инертные газы(0.93%). Кроме того, в воздухе всегда находится некоторое кол-во водяных паров, кол-во которых всегда изменяется с переменой температуры: чем выше температура, тем содержание пара больше и наоборот. Вследствие колебания кол-ва водяных паров в воздухе процентное содержание в нем газов также непостоянно. Все газы, входящие в состав воздуха, бесцветны и не имеют запаха. Вес воздуха изменяется в зависимости не только от температуры, но и от содержания в нем водяных паров. При одинаковой температуре вес сухого воздуха больше, чем влажного, т.к. водяные пары значительно легче паров воздуха.

В таблице приведен газовый состав атмосферы в объемном массовом отношении, а также время жизни основных компонентов:

Компонент % объемные % массовые
N 2 78,09 75,50
O 2 20,95 23,15
Ar 0,933 1,292
CO 2 0,03 0,046
Ne 1,8 10 -3 1,4 10 -3
He 4,6 10 -4 6,4 10 -5
CH 4 1,52 10 -4 8,4 10 -5
Kr 1,14 10 -4 3 10 -4
H 2 5 10 -5 8 10 -5
N 2 O 5 10 -5 8 10 -5
Xe 8,6 10 -6 4 10 -5
O 3 3 10 -7 - 3 10 -6 5 10 -7 - 5 10 -6
Rn 6 10 -18 4,5 10 -17

Свойства газов, входящих в состав атмосферного воздуха под давлением меняются.

К примеру: кислород под давлением более 2-х атмосфер оказывает ядовитое действие на организм.

Азот под давлением свыше 5 атмосфер оказывает наркотическое действие (азотное опьянение). Быстрый подъем из глубины вызывает кессонную болезнь из-за бурного выделения пузырьков азота из крови, как бы вспенивая ее.

Повышение углекислого газа более 3% в дыхательной смеси вызывает смерть.

Каждый компонент, входящий в состав воздуха, с повышением давления до определенных границ становится ядом, способным отравить организм.

Исследования газового состава атмосферы. Атмосферная химия

Для истории бурного развития сравнительно молодой отрасли науки, именуемой атмосферной химией, более всего подходит термин “спурт” (бросок), применяемый в высокоскоростных видах спорта. Выстрелом же из стартового пистолета, пожалуй, послужили две статьи, опубликованные в начале 1970-х годов. Речь в них шла о возможном разрушении стратосферного озона оксидами азота - NO и NO 2 . Первая принадлежала будущему нобелевскому лауреату, а тогда сотруднику Стокгольмского университета П. Крутцену, который посчитал вероятным источником оксидов азота в стратосфере распадающуюся под действием солнечного света закись азота N 2 O естественного происхождения. Автор второй статьи, химик из Калифорнийского университета в Беркли Г.Джонстон предположил, что оксиды азота появляются в стратосфере в результате человеческой деятельности, а именно - при выбросах продуктов сгорания реактивных двигателей высотных самолетов.

Конечно, вышеупомянутые гипотезы возникли не на пустом месте. Соотношение по крайней мере основных компонент в атмосферном воздухе - молекул азота, кислорода, водяного пара и др. - было известно намного раньше. Уже во второй половине XIX в. в Европе производились измерения концентрации озона в приземном воздухе. В 1930-е годы английский ученый С.Чепмен открыл механизм формирования озона в чисто кислородной атмосфере, указав набор взаимодействий атомов и молекул кислорода, а также озона в отсутствие каких-либо других составляющих воздуха. Однако в конце 50-х годов измерения с помощью метеорологических ракет показали, что озона в стратосфере гораздо меньше, чем его должно быть согласно циклу реакций Чепмена. Хотя этот механизм и по сей день остается основополагающим, стало ясно, что существуют какие-то иные процессы, также активно участвующие в формировании атмосферного озона.

Нелишне упомянуть, что знания в области атмосферной химии к началу 70-х годов в основном были получены благодаря усилиям отдельных ученых, чьи исследования не были объединены какой-либо общественно значимой концепцией и носили чаще всего чисто академический характер. Иное дело - работа Джонстона: согласно его расчетам, 500 самолетов, летая по 7 ч в день, могли сократить количество стратосферного озона не меньше чем на 10%! И если бы эти оценки были справедливы, то проблема сразу становилась социально-экономической, так как в этом случае все программы развития сверхзвуковой транспортной авиации и сопутствующей инфраструктуры должны были подвергнуться существенной корректировке, а может быть, и закрытию. К тому же тогда впервые реально встал вопрос о том, что антропогенная деятельность может стать причиной не локального, но глобального катаклизма. Естественно, в сложившейся ситуации теория нуждалась в очень жесткой и в то же время оперативной проверке.

Напомним, что суть вышеупомянутой гипотезы состояла в том, что оксид азота вступает в реакцию с озоном NO + O 3 ® ® NO 2 + O 2 , затем образовавшийся в этой реакции диоксид азота реагирует с атомом кислорода NO 2 + O ® NO + O 2 , тем самым восстанавливая присутствие NO в атмосфере, в то время как молекула озона утрачивается безвозвратно. При этом такая пара реакций, составляющая азотный каталитический цикл разрушения озона, повторяется до тех пор, пока какие-либо химические или физические процессы не приведут к удалению оксидов азота из атмосферы. Так, например, NO 2 окисляется до азотной кислоты HNO 3 , хорошо растворимой в воде, и потому удаляется из атмосферы облаками и осадками. Азотный каталитический цикл весьма эффективен: одна молекула NO за время своего пребывания в атмосфере успевает уничтожить десятки тысяч молекул озона.

Но, как известно, беда не приходит одна. Вскоре специалисты из университетов США - Мичигана (Р.Столярски и Р.Цицероне) и Гарварда (С.Вофси и М. Макэлрой) - обнаружили, что у озона может быть еще более беспощадный враг - соединения хлора. Хлорный каталитический цикл разрушения озона (реакции Cl + O 3 ® ClO + O 2 и ClO + O ® Cl + O 2), по их оценкам, был в несколько раз эффективнее азотного. Сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико, а значит, суммарный эффект его воздействия на озон может оказаться не слишком сильным. Однако ситуация кардинально изменилась, когда в 1974 г. сотрудники Калифорнийского университета в Ирвине Ш. Роуленд и М. Молина установили, что источником хлора в стратосфере являются хлорфторуглеводородные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т.д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются солнечным светом, в результате чего выделяются свободные атомы хлора. Промышленное производство ХФУ, начавшееся в 30-е годы, и их выбросы в атмосферу постоянно наращивались во все последующие годы, особенно в 70-е и 80-е. Таким образом, в течение очень короткого промежутка времени теоретики обозначили две проблемы атмосферной химии, обусловленные интенсивным антропогенным загрязнением.

Однако чтобы проверить состоятельность выдвинутых гипотез, необходимо было выполнить немало задач.

Во-первых, расширить лабораторные исследования, в ходе которых можно было бы определить или уточнить скорости протекания фотохимических реакций между различными компонентами атмосферного воздуха. Надо сказать, что существовавшие в то время весьма скудные данные об этих скоростях к тому же имели изрядную (до нескольких сот процентов) погрешность. Кроме того, условия, в которых производились измерения, как правило, мало соответствовали реалиям атмосферы, что серьезно усугубляло ошибку, поскольку интенсивность большинства реакций зависела от температуры, а иногда от давления или плотности атмосферного воздуха.

Во-вторых, усиленно изучать радиационно-оптические свойства ряда малых газов атмосферы в лабораторных условиях. Молекулы значительного числа составляющих атмосферного воздуха разрушаются ультрафиолетовым излучением Солнца (в реакциях фотолиза), среди них не только упомянутые выше ХФУ, но также молекулярный кислород, озон, оксиды азота и многие другие. Поэтому оценки параметров каждой реакции фотолиза были столь же необходимы и важны для правильного воспроизведения атмосферных химических процессов, как и скорости реакций между различными молекулами.


Воздух — естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов: кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии. В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха методом сжижения получают благородные газы. В соответствии с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается "жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений".

Важнейшими факторами, определяющими пригодность для проживания человека, воздушной среды являются химический состав, степень ионизации, относительная влажность, давление, температура и скорость движения. Рассмотрим каждый из этих факторов по-отдельности.

В 1754 году Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не однородное вещество.

Нормальный состав воздуха

Вещество

Обозначение

По объёму, %

По массе, %

Азот

Кислород

Аргон

Углекислый газ

Неон

0,001818

Метан

0,000084

Гелий

0,000524

0,000073

Криптон

0,000114

Водород

Ксенон

0,0000087



Лёгкие аэроионы

Каждый житель Санкт-Петербурга чувствует, что воздух сильно загрязнен. Постоянно возрастающее количество автомобилей, фабрики и заводы выбрасывают в атмосферу тонны отходов своей деятельности. В загрязнённом воздухе присутствуют нехарактерные физические, химические и биологические вещества. Основными загрязнителями атмосферного воздуха мегаполиса являются: альдегиды, аммиак, атмосферная пыль, оксид углерода, оксиды азота, диоксид серы, углеводороды, тяжелые металлы (свинец, медь, цинк, кадмий, хром).

Наиболее опасными составляющими смога являются микроскопические частицы вредных веществ. Приблизительно 60% - это продукты сгорания автомобильных двигателей. Именно эти частицы мы вдыхаем гуляя по улицам наших городов и накапливаем в наших лёгких. Как утверждают медики, лёгкие жителя мегаполиса очень напоминают по степени загрязнённости лёгкие заядлого курильщика.

На первом месте по вкладу в загрязнение воздуха стоят выхлопные газы автомобилей, выбросы ТЭС – на втором месте, химическая промышленность – на третьем.

Степень ионизации воздуха


Высокая степень ионизации

Атмосферный воздух всегда ионизирован и содержит большее или меньшее количество аэроионов. Процесс ионизации природного воздуха происходит под действием целого ряда факторов, из которых главными являются радиоактивность почвы, горных пород, морских и подземных вод, космические лучи, молнии, разбрызгивание воды (эффект Ленарда) в водопадах, в барашках волн и т.п., ультрафиолетовое излучение Солнца, пламя лесных пожаров, некоторые ароматические вещества и т.п. Под влиянием этих факторов формируются как положительные, так и отрицательные аэроионы. На образовавшиеся ионы мгновенно оседают нейтральные молекулы воздуха, рождая так называемые нормальные и легкие атмосферные ионы. Встречая на своем пути взвешенные в воздухе пылинки, дымовые частицы, мельчайшие капельки воды, легкие ионы на них оседают и превращаются в тяжелые. В среднем над поверхностью земли в 1 см 3 содержится до 1500 ионов, среди которых преобладают положительно заряженные, что является, как будет показано далее, не совсем желательным для здоровья человека.

В некоторых регионах ионизация воздуха характеризуется более благоприятными показателями. К числу местностей, где воздух особенно ионизирован, принадлежат склоны высоких гор, горные долины, водопады, берега морей и океанов. Их часто используют для организации мест отдыха и санаторно-курортного лечения.

Таким образом, ионы воздуха — постоянно действующий фактор внешней среды, такой, как температура, относительная влажность и скорость движения воздуха.

Изменение степени ионизации вдыхаемого воздуха неизбежно влечет за собой сдвиги в различных органах и системах. Отсюда естественно стремление использовать ионизированный воздух в , с одной стороны, и потребность в разработке аппаратов и устройств для искусственного изменения концентрации и соотношения ионов в атмосферном воздухе, с другой. Сегодня, пользуясь специальной аппаратурой, можно усилить степень ионизации воздуха, увеличивая в тысячи раз количество ионов в 1 см 3 .

В санитарно-эпидемиологических правилах и нормативах СанПиН 2.2.4.1294-03 приведены гигиенические требования к аэроионному составу воздуха производственных и общественных помещений. Заметьте, что важно не только количество отрицательно и положительно заряженных аэроионов, но и отношение концентрации положительных к концентрации отрицательных, которое называется коэффициентом униполярности (см. таблицу ниже).


В соответствии с гигиеническими требованиями количество отрицательно заряженных аэроионов должно быть больше либо, в крайнем случае, равно количеству положительно заряженных аэроионов. В условиях проживания в городах и работы в офисных помещениях следует пользоваться аэроионизаторами воздуха, чтобы не терять концентрацию внимания и медленнее уставать во время рабочего дня.

Микроклимат: отн. влажность, температура, скорость движения, давление

Под микроклиматом подразумевают комплекс физичесих параметров окружающей среды, влияющих на теплообмен человека и его здоровье. Основными параметрами микроклимата являются относительная влажность, температура, давление и скорость движения воздуха. Поддержание всех этих параметров в норме внутри помещения является ключевым фактором, определяющим комфортность пребывания в нём человека.


Нормальное значение параметров микроклимата даёт возможность организму человека тратить минимум энергии: на поддержание необходимого уровня теплообмена, на получение необходимого количества кислорода; при этом человек не чувствует ни жары, ни холода, ни духоты. По статистике нарушения микроклимата являются самыми частыми среди всех нарушений санитарно-гигиенических норм.

Микроклимат определяется воздействием внешней среды, особенностями постройки здания и систем отопления, вентиляции и кондиционирования.

В многоэтажных домах существует сильный перепад давления воздуха снаружи здания и внутри. Это приводит к накоплению различных загрязнений в здании, причём их концентрация будет различной на верхних и на нижних этажах, что пагубно сказывается на .

Особенности микроклимата каждой конкретной квартиры формируются под влиянием потоков воздуха, влаги и тепла. Воздух в помещении постоянно находится в движении. Поэтому одним из ключевых параметров воздуха является скорость его движения.

Ниже приведена таблица, в которой указаны оптимальные и допустимые значения температуры, влажности и скорости движения воздуха в различных помещениях в соответствии с действующими СанПиН 2.1.2.2801-10 «Изменения и дополнения №1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях».

Параметров воздуха у себя дома, в офисе или загородном коттедже, Вы сможете принять соответствующие меры по нормализации выявленных отклонений.

Действующие сантитарные правила и нормативы по воздуху

Наименование помещения

Температура воздуха, °C

Относительная влажность, %

Скорость движения воздуха, м/с

оптим.

допуст.

оптим.

допуст.

оптим.

допуст.

Холодный период года

Жилая комната