Движение воздушных масс воздух. Циркуляция воздушных масс. Движения воздушных масс

Конденсация это изменение совтояния вещества из газообразного в жидкое или твёрдое. Но что такое конденсация в мастабе планеты?

В каждый момент времени атмосферапланеты Земля содержит свыше 13 миллиардов тонн влаги. Эта цифра практически постоянна, так как потери за счет выпадения осадков, в конечном счете, непрерывно восполняются испарением.

Скорость кругооборота влаги в атмосфере

Скорость кругооборота влаги в атмосфере оценивается колоссальной цифрой - около 16 миллионов тонн в секунду или 505 миллиардов тонн в год. Если бы вдруг весь водяной пар в атмосфере сконденсировался и выпал в виде осадков, то эта вода могла бы покрыть всю поверхность земного шара слоем примерно 2,5 сантиметра, иными словами, атмосфера содержит количество влаги, эквивалентное всего лишь 2,5 сантиметрам дождя.

Сколько времени находится молекула пара в атмосфере?

Так как на Земле в среднем за год выпадает 92 сантиметра, то, следовательно, в атмосфере влага обновляется 36 раз, то есть 36 раз атмосфера насыщается влагой и освобождается от нее. Это значит, что молекула водяного пара пребывает в атмосфере в среднем 10 дней.

Путь молекулы воды


Однажды испарившись, молекула водяного пара дрейфует обычно сотни и тысячи километров, пока не сконденсируется и не выпадет с осадками на Землю. Вода, снега или града на возвышенностях Западной Европы, преодолевает примерно 3000 км от Северной Атлантики. Между превращением жидкой воды в пар и выпадением осадков на Землю совершается несколько физических процессов.

С теплой поверхности Атлантики молекулы воды попадают в теплый влажный воздух, который в дальнейшем поднимается над окружающим его более холодным (более плотным) и более сухим воздухом.

Если при этом будет наблюдаться сильное турбулентное перемешивание воздушных масс, то в атмосфере появится слой перемешивания и облака на границе двух воздушных масс. Около 5% их объема составляет влага. Насыщенный паром воздух всегда легче, во-первых, потому, что он нагрет и поступает с теплой поверхности, во-вторых, потому, что 1 кубический метр чистого пара примерно на 2/5 легче 1 кубический метр чистого сухого воздуха при той же температуре и давлении. Отсюда следует, что влажный воздух легче сухого, а теплый и влажный тем более. Как мы увидим позже, это очень важный факт для процессов изменения погоды.

Перемещение воздушных масс

Воздух может подниматься по двум причинам: либо потому, что становится легче в результате нагревания и увлажнения, либо потому, что на него действуют силы, заставляющие его подниматься над некоторыми препятствиями, например над массами более холодного и плотного воздуха или над холмами и горами.

Охлаждение

Поднимающийся воздух, попав в слои с меньшим атмосферным давлением, вынужден расширяться и при этом охлаждаться. Расширение требует затрат кинетической энергии, которая берется за счет тепловой и потенциальной энергии атмосферного воздуха, а этот процесс неизбежно ведет к понижению температуры. Скорость охлаждения поднимающейся порции воздуха часто меняется, если эта порция перемешивается с окружающим воздухом.

Сухоадиабатический градиент

Сухой воздух, в котором отсутствует конденсация или испарение, а также перемешивание, не получающий энергию в другой форме, охлаждается или нагревается на постоянную величину (на 1°С через каждые 100 метров) по мере подъема или опускания. Эту величину называют сухоадиабатическим градиентом. Но если поднимающаяся воздушная масса влажная и в ней происходит конденсация, то при этом выделяется скрытая теплота конденсации и температура насыщенного паром воздуха падает значительно медленнее.

Влажноадиабатический градиент

Эта величина изменения температуры называется влажно-адиабатическим градиентом. Она не постоянна, а изменяется с изменением величины высвобождающейся скрытой теплоты, другими словами, она зависит от количества конденсируемого пара. Количество же пара зависит от того, насколько сильно понижается температура воздуха. В нижних слоях атмосферы, где воздух теплый и влажность высокая, влажно-адиабатический градиент чуть больше половины сухоадиабатического градиента. Но влажно-адиабатический градиент постепенно растет с высотой и на очень большой высоте в тропосфере практически равен сухоадиабатическому градиенту.

Плавучесть движущегося воздуха определяется соотношением между его температурой и температурой окружающего воздуха. Как правило, в реальной атмосфере температура воздуха падает с высотой неравномерно (это изменение называется просто градиентом).

Если масса воздуха теплее и поэтому менее плотная, чем окружающий воздух (а влагосодержание постоянно), то она поднимается вверх так же, как детский мяч, погруженный в бак. И наоборот, когда движущийся воздух холоднее окружающего, то плотность его выше и он опускается. Если воздух имеет ту же самую температуру, что и соседние массы, то их плотность равна и масса остается неподвижной или движется только вместе с окружающим воздухом.

Таким образом, в атмосфере присутствуют два процесса, один из которых способствует развитию вертикального движения воздуха, а другой замедляет его.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

С самого детства меня завораживали невидимые движения вокруг нас: слабый ветерок, кружащий осенние листья в тесном дворике или мощный зимний циклон. Оказывается, эти процессы имеют вполне понятные физические законы.

Какие силы заставляют воздушные массы двигаться

Теплый воздух легче, чем холодный – этот простой принцип способен объяснить движение воздуха на планете. Начинается всё на экваторе. Здесь солнечные лучи падают на поверхность Земли под прямым углом, и маленькой частичке экваториального воздух достается чуть больше тепла, чем соседним. Эта теплая частица становится легче, чем соседние, а значит, начинает всплывать вверх до тех пор, пока не растеряет всё тепло и не начнет снова опускаться. Но движение вниз уже происходит в тридцатых широтах Северного или Южного полушария.

Если бы не существовало дополнительных сил, так бы воздух и двигался от экватора к полюсам. Но существуют не одна, а сразу несколько сил, которые заставляют воздушные массы перемещаться:

  • Сила плавучести. Когда теплый воздух всплывает, а холодный остается внизу.
  • Сила Кориолиса. О ней расскажу чуть ниже.
  • Рельеф планеты. Сочетания морей и океанов, гор и равнин.

Отклоняющая сила вращения Земли

Метеорологам было бы легче, если бы наша планета не вращалась. Но она вращается! Это порождает отклоняющую силу вращения Земли или силу Кориолиса. Из-за движения планеты та самая «легкая» частица воздуха не только вытесняется, скажем, на север, но и смещается вправо. Либо она вытесняется на юг и отклоняется влево.

Так зарождаются постоянные ветра западных или восточных направлений. Возможно, вы слышали о течении Западных Ветров или о Ревущих сороковых? Эти постоянные движения воздуха возникли именно благодаря силе Кориолиса.


Моря и океаны, горы и равнины

Окончательную неразбериху вносит рельеф. Распределение суши и океана изменяет классическую циркуляцию. Так, в Южном полушарии суши намного меньше, чем в Северном, и ничто не мешает воздуху двигаться над водной гладью в нужном ему направлении, нет ни гор, ни крупных городов, тогда как Гималаи в корне меняют циркуляцию воздуха в своем районе.

Отвечая на вопрос, что такое воздушная масса, можно сказать, что это среда обитания человека. Мы ею дышим, видим, ощущаем ежедневно. Без окружающего воздуха человечество не смогло бы вести свою жизнедеятельность.

Роль потоков в природном круговороте

Что такое воздушная масса? Это приносящий смену погодных условий. За счет естественного движения окружающей среды перемещаются осадки на тысячи километров по земному шару. Снег и дождь, холод и тепло приходят по установленным закономерностям. Учёные могут предсказывать изменение климата, глубже вникая в закономерности природных катаклизмов.

Постараемся дать ответ на вопрос: что такое воздушная масса? К ярким её примерам относят циклоны, перемещающиеся непрерывно. С ними приходит потепление или похолодание. Они движутся с постоянной закономерностью, но в редких случаях происходит их отклонение от обычной траектории. В результате таких нарушений в природе обнаруживают катаклизмы.

Так, в пустыне выпадает снег от встречающихся циклонов различной температуры или формируются смерчи, ураганы. Это все относится к ответу на вопрос: что такое воздушная масса? От её состояния зависит, какая будет погода, насыщенность воздуха кислородом или влагой.

Смена тепла и холода: причины

Воздушные массы — это основной участник образования климата на земле. Нагрев слоёв атмосферы происходит благодаря энергии, получаемой от солнца. Благодаря перепадам температуры меняется плотность воздуха. Более разреженные области заполняются плотными объемами.

Воздушные массы — это совокупность различных состояний газообразных слоёв атмосферы, зависящих от перераспределения тепла за счет смены дня и ночи. В тёмное время суток воздух охлаждается, появляется ветер, движущийся из более плотных слоёв в разреженные. Сила потока зависит от скорости снижения температуры, местности, влажности.

На движение масс влияют как горизонтальные перепады температур, так и вертикальные. Днём земля принимает тепло от солнца, начиная отдавать его нижним слоям атмосферы с вечера. Этот процесс продолжается всю ночь, а наутро водяной пар концентрируется в воздухе. Это становится причиной осадков: росы, дождя, тумана.

Какими бывают газообразные состояния?

Характеристика воздушных масс — это количественная величина, с помощью которой можно описать определённые состояния газообразных слоёв и дать им оценку.

Существует три основных показателя слоёв тропосферы:

  • Температура даёт информацию о происхождении смещения масс.
  • Влажность, повышенная в местах, расположенных неподалёку от морей, озёр и рек.
  • Прозрачность определяется внешне. На этот параметр влияют взвешенные в воздухе твердые частицы пыли.

Выделяют следующие виды воздушных масс:

  • Тропические — перемещаются в сторону умеренных широт.
  • Арктические — холодные массы, движутся в сторону тёплых широт с северной части планеты.
  • Антарктические — холодные, движутся с южного полюса.
  • Умеренные, наоборот, тёплые массы воздуха и движутся к холодным полюсам.
  • Экваториальные — самые тёплые, расходятся в области с более низкой температурой.

Подтипы

При движении воздушных масс происходит их преобразование из одного географического типа в другой. Существуют подтипы: континентальный, морской. Соответственно, первые преобладают со стороны суши, вторые приносят влагу с просторов морей и океанов. Наблюдается закономерность перепада температур у таких масс в зависимости от сезона: летом ветра с суши значительно теплее, а зимой греют морские.

Везде существуют господствующие воздушные массы, преобладающие постоянно за счет установленных закономерностей. Они определяют погоду в данной местности, и, как следствие, это приводит к различию растительности и животного мира. В последнее время трансформация воздушных масс существенно изменилась благодаря жизнедеятельности человека.

Преобразование воздушных масс проявляется отчётливее на побережьях, где встречаются потоки с суши и моря. В отдельных районах ветер не утихает ни на секунду. Чаще он сухой и не меняет направление длительное время.

Как происходит преобразование потоков в природе?

Воздушными массы становятся видимыми при определённых условиях. Примерами таких явлений становятся облака, тучи, туманы. Располагаться они могут как на высоте тысяч километров, так и прямо над землёй. Последние образуются при резком снижении температуры окружающего воздуха от повышенной влажности.

Солнце играет важную роль в бесконечном процессе движения воздушных масс. Смена дня и ночи приводит к тому, что потоки устремляются ввысь, поднимая с собой частицы воды. Высоко в небе они кристаллизуются и начинают падать. В летний сезон, когда достаточно тепло, ледышки успевают растаять в полёте, так наблюдают осадки в основном в виде дождя.

А зимой, когда над землей проходят холодные потоки, начинает идти снег или даже град. Поэтому в районах экваториальных и тропических широт тёплый воздух расправляет кристаллики. В регионах же северных районов эти осадки происходят практически каждый день. Холодные потоки подогреваются от нагретой земной поверхности, лучи солнца проходят сквозь воздушные слои. А вот тепло, отданное в ночное время, становится причиной образования облаков, утренней росы, тумана.

Как по определённым признакам узнают смену погоды?

Ещё в прошлом научились предсказывать осадки по явным приметам:

  • Вдали становятся едва заметными или белые области в форме лучей.
  • Резкое усиление ветра говорит о приближении холодных масс. Может пойти дождь, снег.
  • Облака всегда собираются в зонах низкого давления. Существует верный способ определить эту область. Для этого нужно развернуться спиной к потоку и посмотреть немного левее от горизонта. Если там появились сгущения, то это явный признак ненастной погоды. Не стоит путать: облака в правой части не являются признаком ухудшения погодных условий.
  • Появление белесой пелены, когда солнце начинает затуманиваться.

Ветер спадает, когда холодная область проходит. Более тёплые потоки заполняют образовавшееся разрежение, часто становится душно после дождя.

Движения воздушных масс

Воздух находится в непрерывном движении, особенно благодаря деятельности циклонов и антициклонов.

Тёплая воздушная масса, которая движется из тёплых районов в более холодные, своим приходом вызывает неожиданное потепление. При этом от соприкосновения с более холодной земной поверхностью движущаяся воздушная масса снизу охлаждается и прилегающие к земле слои воздуха могут оказаться даже холоднее верхних слоёв. Охлаждение тёплой воздушной массы, идущее снизу, вызывает конденсацию водяного пара в самых нижних слоях воздуха, в результате образуются облака и выпадают осадки. Эти облака располагаются невысоко, часто опускаются до земли и вызывают туманы. В нижних слоях тёплой воздушной массы довольно тепло и ледяных кристаллов нет. Поэтому они не могут давать обильных осадков, лишь иногда выпадает мелкий, моросящий дождь. Облака тёплой воздушной массы заволакивают всё небо ровным покровом (тогда их называют слоистыми) или слегка волнистым слоем (тогда их называют слоисто-кучевыми).

Холодная воздушная масса движется из холодных районов в более тёплые и приносит похолодание. Передвигаясь на более тёплую земную поверхность, она непрерывно подогревается снизу.При нагревании не только не происходит конденсации, но и уже имеющиеся облака и туманы должны испаряться, тем не менее небо не становится безоблачным, просто облака образуются совсем по другим причинам. При нагревании все тела нагреваются и плотность их уменьшается, поэтому когда самый нижний слой воздуха нагревается и расширяется, он становится более лёгким и как бы всплывает в виде отдельных пузырей или струй и на его место опускается более тяжёлый холодный воздух. Воздух, как и любой газ, при сжатии нагревается, а при расширении охлаждается. Атмосферное давление с высотой уменьшается, поэтому воздух, поднимаясь, расширяется и охлаждается на 1 градус на каждые 100м подъёма, и в результате на определённой высоте в нём начинается конденсация и образование облаков.Опускающиеся струи воздуха от сжатия нагреваются и в них не только ничего не конденсируется, но даже испаряются попадающие в них остатки облаков. Поэтому облака холодных воздушных масс представляют собой нагромождающиеся в высоту клубы с просветами между ними. Такие облака называются кучевыми или кучево-дождевыми. Они никогда не опускаются до земли и не переходят в туманы, и, как правило, не закрывают весь видимый небосвод. В таких облаках восходящие потоки воздуха увлекают за собой водяные капли в те слои, где всегда имеются ледяные кристаллики, при этом облако теряет характерную форму "цветной капусты" и облако превращается в кучево-дождевое. С этого момента из облака выпадают осадки, хотя и сильные, но непродолжительные из-за малых размеров облаков. Поэтому погода холодных воздушных масс очень неустойчива.

Атмосферный фронт

Граница соприкосновения разных воздушных масс называется атмосферным фронтом. На синоптических картах эта граница представляет собой линию, которую метеорологи называют «линия фронта». Граница между тёплой и холодной воздушной массой является почти горизонтальной поверхностью, незаметно опускающейся к линии фронта. Холодный воздух находится под этой поверхностью, а тёплый сверху. Так как воздушные массы всё время в движении, то и граница между ними всё время сдвигается. Интересная особенность: через центр области пониженного давления обязательно проходит линия фронта, а через центры областей повышенного давления фронт не проходит никогда.

Тёплый фронт возникает при продвижении вперёд тёплой воздушной массы и отступлении холодной. Тёплый воздух, как более лёгкий, наползает на холодный. Из-за того, что подъём воздуха приводит к его охлаждению, над поверхностью фронта образуются облака. Тёплый воздух взбирается вверх достаточно медленно, поэтому облачность тёплого фронта представляет собой ровную пелену перисто-слоистых и высокослоистых облаков, которая имеет ширину несколько сот метров и иногда на тысячи километров в длину. Чем дальше впереди линии фронта находятся облака, тем они выше и тоньше.

Холодный фронт движется в сторону тёплого воздуха. При этом холодный воздух подлезает под тёплый. Нижняя часть холодного фронта из-за трения о земную поверхность отстаёт от верхней, поэтому поверхность фронта выпячивается вперёд.

Атмосферные вихри

Развитие и перемещение циклонов и антициклонов приводит к переносам воздушных масс на значительные расстояния и соответствующим непериодическим изменениям погоды, связанным со сменой направлений и скоростей ветра, с увеличением или уменьшением облачности и осадков. В циклонах и антициклонах воздух перемещается в сторону уменьшения атмосферного давления, отклоняясь под действием разных сил: центробежной, Кориолиса, трения и др. В результате в циклонах ветер направлен к его центру с вращением против часовой стрелки в Северном полушарии и по часовой стрелке в Южном, в антициклонах, наооборот, от центра с противоположным вращением.

Цикло́н - атмосферный вихрь огромного (от сотен до 2-3 тысяч километров) диаметра с пониженным атмосферным давлением в центре. Различают циклоны внетропические и тропические.

Тропические циклоны (тайфуны) обладают особыми свойствами и возникают гораздо реже. Они образуются в тропических широтах (от 5° до 30° каждого полушария) и имеют меньшие размеры (сотни, редко - более тысячи километров), но бо́льшие барические градиенты и скорости ветра, доходящие до ураганных. Для таких циклонов характерен «глаз бури» - центральная область диаметром 20-30 км с относительно ясной и безветренной погодой. Вокруг располагаются мощные сплошные скопления кучево-дождевых облаков с сильнейшими дождями. Тропические циклоны могут в процессе своего развития превращаться во внетропические.

Внетропические циклоны образуются в основном на атмосферных фронтах, чаще всего находящихся в субполярных районах, способствуют самым значительным изменениям погоды. Для циклонов характерна облачная и дождливая погода, с ними связана большая часть осадков в умеренной зоне. В центре внетропического циклона наиболее интенсивные осадки и наиболее густая облачность.

Антициклон - область повышенного атмосферного давления. Обычно погода антициклона ясная или малооблачная. Имеют значение для погоды также маломасштабные вихри (смерчи, тромбы, торнадо).

Пого́да - совокупность значений метеорологических элементов и атмосферных явлений, наблюдаемых в определённый момент времени в той или иной точке пространства. Понятие «Погода» относится к текущему состоянию атмосферы, в противоположность понятию «Климат», которое относится к среднему состоянию атмосферы за длительный период времени. Если нет уточнений, то под термином «Погода» понимают погоду на Земле. Погодные явления протекают в тропосфере (нижней части атмосферы) и в гидросфере. Погоду можно описать давлением, температурой и влажностью воздуха, силой и направлением ветра, облачностью, атмосферными осадками, дальностью видимости, атмосферными явлениями (туманами, метелями, грозами) и другими метеорологическими элементами.

Кли́мат (др.-греч. κλίμα (род. п. κλίματος) - наклон) - многолетний режим погоды, характерный для данной местности в силу её географического местоположения.

Климат - статистический ансамбль состояний, через который проходит система: гидросфера → литосфера → атмосфера за несколько десятилетий. Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат - это средняя погода. Таким образом, погода - это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет. Основными глобальными геофизическими циклическими процессами, формирующими климатические условия на Земле, являются теплооборот, влагооборот и общая циркуляция атмосферы.

Распределение осадков на Земле. Атмосферные осадки на земной поверхности распределяются очень неравномерно. Одни территории страдают от избытка влаги, другие – от ее недостатка. Очень мало осадков получают территории, расположенные вдоль Северного и Южного тропиков, где высокие температуры и потребность в осадках особенно велика. Огромные территории земного шара, имеющие много тепла, не используются в сельском хозяйстве из-за недостатка влаги.

Чем же можно объяснить неравномерное распределение осадков на земной поверхности? Вы, наверное, уже догадались, что главная причина – размещение поясов низкого и высокого атмосферного давления. Так, у экватора в поясе низкого давления постоянно нагретый воздух содержит много влаги; поднимаясь вверх, он охлаждается и становится насыщенным. Поэтому в области экватора образуется много облаков и идут обильные дожди. Немало выпадает осадков и в других областях земной поверхности (см. рис. 18), где низкое давление.

Климатообразующие факторыВ поясах высокого давления преобладают нисходящие токи воздуха. Холодный воздух, опускаясь, содержит мало влаги. При опускании он сжимается и нагревается, благодаря чему становится суше. Поэтому в областях повышенного давления над тропиками и у полюсов осадков выпадает мало.

ЗОНАЛЬНОСТЬ КЛИМАТИЧЕСКАЯ

Подразделение земной поверхности по общности климатических условий на крупные зоны, представляющие собой части поверхности земного шара, имеющие более или менее широтное протяжение и выделенные по определенным климатическим показателям. З. к. не обязательно должна охватывать по широте все полушарие. В климатических зонах выделяются климатические обл. Различают вертикальные зоны, выделяемые в горах и лежащие одна над другой. Каждая из этих зон обладает определенным климатом. В разных широтных зонах одноименные вертикальные климатические зоны будут различны по особенностям климата.

Эколого-геологическая роль атмосферных процессов

Уменьшение прозрачности атмосферы за счет появления в ней аэрозольных частиц и твердой пыли влияет на распределение солнечной радиации, увеличивая альбедо или отражательную способность. К такому же результату приводят и разнообразные химические реакции, вызывающие разложение озона и генерацию «перламутровых» облаков, состоящих из водяного пара. Глобальное изменение отражательной способности, так же как изменения газового состава атмосферы, главным образом парниковых газов, являются причиной климатических изменений.

Неравномерное нагревание, вызывающее различия в атмосферном давлении над разными участками земной поверхности, приводит к атмосферной циркуляции, которая является отличительной чертой тропосферы. При возникновении разности в давлении воздух устремляется из областей повышенного давления в область пониженных давлений. Эти перемещения воздушных масс вместе с влажностью и температурой определяют основные эколого-геологические особенности атмосферных процессов.

В зависимости от скорости ветер производит на земной поверхности различную геологическую работу. При скорости 10 м/с он качает толстые ветви деревьев, поднимает и переносит пыль и мелкий песок; со скоростью 20 м/с ломает ветви деревьев, переносит песок и гравий; со скоростью 30 м/с (буря) срывает крыши домов, вырывает с корнем деревья, ломает столбы, передвигает гальку и переносит мелкий щебень, а ураганный ветер со скоростью 40 м/с разрушает дома, ломает и сносит столбы линий электропередач, вырывает с корнем крупные деревья.

Большое негативное экологическое воздействие с катастрофическими последствиями оказывают шквальные бури и смерчи (торнадо) - атмосферные вихри, возникающие в теплое время года на мощных атмосферных фронтах, имеющие скорость до 100 м/с. Шквалы - это горизонтальные вихри с ураганной скоростью ветра (до 60-80 м/с). Они часто сопровождаются мощными ливнями и грозами продолжительностью от нескольких минут до получаса. Шквалы охватывают территории шириной до 50 км и проходят расстояние в 200-250 км. Шквальная буря в Москве и Подмосковье в 1998 г. повредила крыши многих домов и повалила деревья.

Смерчи, называемые в Северной Америке торнадо, представляют собой мощные воронкообразные атмосферные вихри, часто связанные с грозовыми облаками. Это суживающиеся в середине столбы воздуха диаметром от нескольких десятков до сотен метров. Смерч имеет вид воронки, очень похожей на хобот слона, спускающейся с облаков или поднимающейся с поверхности земли. Обладая сильной разреженностью и высокой скоростью вращения, смерч проходит путь до нескольких сотен километров, втягивая в себя пыль, воду из водоемов и различные предметы. Мощные смерчи сопровождаются грозой, дождем и обладают большой разрушительной силой.

Смерчи редко возникают в приполярных или экваториальных областях, где постоянно холодно или жарко. Мало смерчей в открытом океане. Смерчи происходят в Европе, Японии, Австралии, США, а в России особенно часты в Центрально-Черноземном районе, в Московской, Ярославской, Нижегородской и Ивановской областях.

Смерчи поднимают и перемещают автомобили, дома, вагоны, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США. Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек. Смерчи относятся к быстродействующим катастрофическим атмосферным процессам. Они формируются всего за 20-30 мин, а время их существования 30 мин. Поэтому предсказать время и место возникновения смерчей практически невозможно.

Другими разрушительными, но действующими продолжительное время атмосферными вихрями являются циклоны. Они образуются из-за перепада давления, которое в определенных условиях способствует возникновению кругового движения воздушных потоков. Атмосферные вихри зарождаются вокруг мощных восходящих потоков влажного теплого воздуха и с большой скоростью вращаются по часовой стрелке в южном полушарии и против часовой - в северном. Циклоны в отличие от смерчей зарождаются над океанами и производят свои разрушительные действия над материками. Основными разрушительными факторами являются сильные ветры, интенсивные осадки в виде снегопада, ливней, града и нагонные наводнения. Ветры со скоростями 19 - 30 м/с образуют бурю, 30 - 35 м/с - шторм, а более 35 м/с - ураган.

Тропические циклоны - ураганы и тайфуны - имеют среднюю ширину в несколько сот километров. Скорость ветра внутри циклона достигает ураганной силы. Длятся тропические циклоны от нескольких дней до нескольких недель, перемещаясь со скоростью от 50 до 200 км/ч. Циклоны средних широт имеют больший диаметр. Поперечные размеры их составляют от тысячи до нескольких тысяч километров, скорость ветра штормовая. Движутся в северном полушарии с запада и сопровождаются градом и снегопадом, имеющими катастрофический характер. По числу жертв и наносимому ущербу циклоны и связанные с ними ураганы и тайфуны являются самыми крупными после наводнений атмосферными стихийными явлениями. В густонаселенных районах Азии число жертв во время ураганов измеряется тысячами. В 1991 г. в Бангладеш во время урагана, который вызвал образование морских волн высотой 6 м, погибло 125 тыс. человек. Большой ущерб наносят тайфуны территории США. При этом гибнут десятки и сотни людей. В Западной Европе ураганы приносят меньший ущерб.

Катастрофическим атмосферным явлением считаются грозы. Они возникают при очень быстром поднятии теплого влажного воздуха. На границе тропического и субтропического поясов грозы происходят по 90-100 дней в году, в умеренном поясе по 10-30 дней. В нашей стране наибольшее количество гроз случается на Северном Кавказе.

Грозы обычно продолжаются менее часа. Особую опасность представляют интенсивные ливни, градобития, удары молнии, порывы ветра, вертикальные потоки воздуха. Опасность градобития определяется размерами градин. На Северном Кавказе масса градин однажды достигала 0,5 кг, а в Индии отмечены градины массой 7 кг. Наиболее градоопасные районы у нас в стране находятся на Северном Кавказе. В июле 1992 г. град повредил в аэропорту «Минеральные Воды» 18 самолетов.

К опасным атмосферным явлениям относятся молнии. Они убивают людей, скот, вызывают пожары, повреждают электросеть. От гроз и их последствий ежегодно в мире гибнет около 10 000 человек. Причем в некоторых районах Африки, во Франции и США число жертв от молний больше, чем от других стихийных явлений. Ежегодный экономический ущерб от гроз в США составляет не менее 700 млн. долларов.

Засухи характерны для пустынных, степных и лесостепных регионов. Недостаток атмосферных осадков вызывает иссушение почвы, понижение уровня подземных вод и в водоемах до полного их высыхания. Дефицит влаги приводит к гибели растительности и посевов. Особенно сильными бывают засухи в Африке, на Ближнем и Среднем Востоке, в Центральной Азии и на юге Северной Америки.

Засухи изменяют условия жизнедеятельности человека, оказывают неблагоприятное воздействие на природную среду через такие процессы, как осолонение почвы, суховеи, пыльные бури, эрозия почвы и лесные пожары. Особенно сильными пожары бывают во время засухи в таежных районах, тропических и субтропических лесах и саваннах.

Засухи относятся к кратковременным процессам, которые продолжаются в течение одного сезона. В том случае, когда засухи длятся более двух сезонов, возникает угроза голода и массовой смертности. Обычно действие засухи распространяется на территорию одной или нескольких стран. Особенно часто продолжительные засухи с трагическими последствиями возникают в Сахельской области Африки.

Большой ущерб приносят такие атмосферные явления, как снегопады, кратковременные ливневые дожди и продолжительные затяжные дожди. Снегопады вызывают массовые сходы лавин в горах, а быстрое таяние выпавшего снега и ливневые продолжительные дожди приводят к наводнениям. Огромная масса воды, падающая на земную поверхность, особенно в безлесных районах, вызывает сильную эрозию почвенного покрова. Происходит интенсивный рост овражно-балочных систем. Наводнения возникают в результате крупных паводков в период обильного выпадения атмосферных осадков или половодья после внезапно наступившего потепления или весеннего таяния снега и, следовательно, по происхождению относятся к атмосферным явлениям (они рассматриваются в главе, посвященной экологической роли гидросферы).

Выве́тривание - разрушение и изменение горных пород под влиянием температуры, воздуха,воды. Совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих их минералов, приводящих к образованию продуктов выветривания. Происходит за счёт действия на литосферу гидросферы, атмосферы и биосферы. Если горные породы длительное время находятся на поверхности, то в результате их преобразований образуется кора выветривания. Различают три вида выветривания: физическое (лёд, вода и ветер) (механическое), химическое и биологическое.

Физическое выветривание

Чем больше разница температур в течение суток, тем быстрее происходит процесс выветривания. Следующим шагом в механическом выветривании является попадание в трещины воды, которая при замерзании увеличивается в объёме на 1/10 своего объёма, что способствует ещё большему выветриванию породы. Если глыбы горных пород попадут, например, в реку, то там они медленно стачиваются и измельчаются под воздействием течения. Селевые потоки, ветер, сила тяжести, землетрясения, извержения вулканов также содействуют физическому выветриванию горных пород. Механическое измельчение горных пород приводит к пропусканию и задерживанию породой воды и воздуха, а также значительному увеличению площади поверхности, что создает благоприятные условия для химического выветривания. В результате катаклизмов с поверхности могут осыпаться породы, образуя плутонические породы. Всё давление на них оказывают боковые породы, из-за чего плутонические породы начинают расширяться, что ведёт к рассыпанию верхнего слоя пород.

Химическое выветривание

Химическое выветривание - это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с образованием новых минералов и соединений. Важнейшими факторами химического выветривания являются вода, углекислый газ и кислород. Вода - энергичный растворитель горных пород и минералов. Основная химическая реакция воды с минералами магматических пород - гидролиз, приводит к замене катионов щелочных и щелочноземельных элементов кристаллической решётки на ионы водорода диссооциированных молекул воды:

KAlSi3O8+H2O→HAlSi3O8+KOH

Образующееся основание (KOH) создает в растворе щелочную среду, при которой происходит дальнейшее разрушение кристаллической решётки ортоклаза. При наличии CO2 KOH переходит в форму карбоната:

2KOH+CO2=K2CO3+H2O

Взаимодействие воды с минералами горных пород приводит также и к гидратации - присоединению частиц воды к частицам минералов. Например:

2Fe2O3+3H2O=2Fe2O·3H2O

В зоне химического выветривания также широко распространена реакция окисления, которой подвергаются многие минералы содержащие способные к окислению металлы. Ярким примером окислительных реакций при химическом выветривании является взаимодействие молекулярного кислорода с сульфидами в водной среде. Так, при окислении пирита наряду с сульфатами и гидратами окисей железа образуется серная кислота, участвующая в создании новых минералов.

2FeS2+7O2+H2O=2FeSO4+H2SO4;

12FeSO4+6H2O+3O2=4Fe2(SO4)3+4Fe(OH)3;

2Fe2(SO4)3+9H2O=2Fe2O3·3H2O+6H2SO4

Радиационное выветривание

Радиационным выветриванием называется разрушение пород под действием радиационного излучения. Радиационное выветривание оказывает влияние на процесс химического, биологического и физического выветривания. Характерным примером породы, значительно подверженной радиационному выветриванию, может служить лунный реголит.

Биологическое выветривание

Биологическое выветривание производят живые организмы (бактерии, грибки, вирусы, роющие животные, низшие и высшие растения).В процессе своей жизнедеятельности они воздействуют на горные породы механически (разрушение и дробление горных пород растущими корнями растений,при ходьбе,рытье нор животными).Особенно большая роль в биологическом выветривании принадлежит микроорганизмам.

Продукты выветривания

Продуктом выветривания в ряде областей Земли на дневной поверхности являются курумы. Продуктами выветривания в определенных условиях становятся щебень, дресва, «шиферные» обломки, песчаные и глинистые фракции, включая каолин, лессы, отдельные обломки горных пород различных форм и размеров в зависимости от петрографического состава, времени и условий выветривания.

Схема циркуляции атмосферы

Воздух в атмосфере находится в постоянном движении. Он перемещается как в горизонтальном, так и в вертикальном направлении.

Первопричиной перемещения воздуха в атмосфере является неравномерное распределение солнечной радиации и неоднородность подстилающей поверхности. Они обусловливают неодинаковую температуру воздуха и, соответственно, атмосферное давление над земной поверхностью.

Разность давления порождает движение воздуха, которое перемещается из областей высокого к областям низкого давления. В процессе перемещения воздушные массы отклоняются под действием силы вращения Земли.

(Вспомните, как отклоняются тела, движущиеся в Северном и Южном полушариях.)

Вы, конечно, заметили, как в жаркий летний день над асфальтом образуется легкое марево. Это нагретый, легкий воздух поднимается вверх. Подобную, но значительно более масштабную картину можно наблюдать на экваторе. Очень нагретый воздух постоянно поднимается вверх, образуя восходящие потоки.

Поэтому здесь у поверхности формируется постоянный пояс низкого давления.
Воздух, поднявшийся над экватором, в верхних слоях тропосферы (10-12 км) растекается к полюсам. Постепенно оно охлаждается и примерно над 30 t° северной и южной широты начинает опускаться.

Так образуется избыток воздуха, который способствует формированию в приземном слое атмосферы тропического пояса высокого давления.

В приполярных областях воздух холодный, тяжелый и опускается, вызывая нисходящие движения. Вследствие этого в приповерхностных слоях полярного пояса образуется высокое давление.

Между тропическим и полярным поясами высокого давления в умеренных широтах формируются активные атмосферные фронты. Массивнее холодный воздух вытесняет вверх теплый, вызывая восходящие потоки.

Вследствие этого в умеренных широтах формируется приземный пояс низкого давления.

Карта климатических поясов Земли

Если бы земная поверхность была однородной, пояса атмосферного давления распространялись бы сплошными полосами. Однако поверхность планеты представляет собой чередование воды и суши, которые имеют разные свойства. Сушу быстро нагревается и охлаждается.

Океан, наоборот, нагревается и отдает свое тепло медленно. Вот почему пояса атмосферного давления разрываются на отдельные участки - области высокого и низкого давления. Одни из них существуют на протяжении всего года, другие - в определенный сезон.

На Земле закономерно чередуются пояса высокого и низкого давления. Высокое давление - на полюсах и у тропиков, низкий - у экватора и в умеренных широтах.

Типы циркуляции атмосферы

В атмосфере Земли есть несколько мощных звеньев циркуляции воздушных масс. Все они действующие и присущие определенным широтным зонам. Поэтому их называют зональными типами циркуляции атмосферы.

У поверхности Земли потоки воздуха движутся от тропического пояса высокого давления к экватору. Под действием силы, возникающей вследствие вращения Земли, они отклоняются вправо в Северном полушарии и влево - в Южном.

Так образуются постоянные мощные ветры - пассаты. В Северном полушарии пассаты дуют в направлении с северо-востока, а в Южной - с юго-востока. Итак, первый зональный тип циркуляции атмосферы - пассатный .

От тропиков воздух перемещается и в умеренные широты. Отклоняясь под действием силы вращения Земли, они начинают постепенно двигаться с запада на восток. Именно такой поток с Атлантики охватывает умеренные широты всей Европы, в том числе и Украины. Западный перенос воздуха в умеренных широтах - это второй зональный тип планетарной циркуляции атмосферы.

Закономерно также движение воздуха из приполярных поясов высокого давления в умеренные широты, где давление низкое.

Под действием отклоняющей силы вращения Земли это воздух движется с северо-востока в Северном полушарии и с юго-востока - в Южной. Восточный приполярный поток воздушных масс образует третий зональный тип циркуляции атмосферы.

На карте атласа найдите широтные пояса, где господствуют различные типы зональной циркуляции воздуха.

В связи с неравномерным нагревом суши и океана зональная схема перемещения воздушных масс нарушается. Например, на востоке Евразии в умеренных широтах западный перенос воздуха действует только полгода – зимой. Летом, когда материк нагревается, воздушные массы с прохладой океана перемещаются на сушу.

Так возникает муссонный перенос воздуха. Смена направлений движения воздуха дважды в год - характерная особенность муссонной циркуляции. Зимний муссон - поток сравнительно холодного и сухого воздуха с материка на океан.

Летний муссон - движение влажного и теплого воздуха в обратном направлении.

Зональные типы циркуляции атмосферы

Есть три главных зональных типа циркуляции атмосферы : пассатный, западный перенос воздуха и восточный приполярный поток воздушных масс. Муссонный перенос воздуха нарушает общую схему циркуляции атмосферы и является азональным типом циркуляции.

Общая циркуляция атмосферы (стр. 1 из 2)

Министерство науки и образования Республики Казахстан

Академия экономики и права имени У.А. Джолдасбекова

Факультет «Гуманитарно-экономическая академия»

По дисциплине: Экология

На тему: «Общая циркуляция атмосферы»

Выполнила: Царская Маргарита

Группа 102 А

Проверил: Омаров Б.Б.

Талдыкорган 2011г.

Введение

1. Общие сведения о циркуляции атмосферы

2. Факторы, определяющие общую циркуляцию атмосферы

3. Циклоны и антициклоны.

4. Ветра, влияющие на общую циркуляцию атмосферы

5. Эффект фена

6. Схема общей циркуляции «Машина планеты»

Заключение

Список использованной литературы

Введение

На страницах научной литературы в последнее время часто встречается понятие общая циркуляция атмосферы, смысл которого каждый специалист понимает по-своему. Систематически используют этот термин специалисты, занимающиеся географией, экологией, верхней части атмосферы.

Все больший интерес к общей циркуляции атмосферы проявляют метеорологи и климатологи, биологи и медики, гидрологи и океанологи, ботаники и зоологи, и конечно же экологи.

Нет единого мнения, является ли указанное научное направление возникшим недавно или исследования здесь продолжаются уже столетия.

Ниже предложены определения общей циркуляции атмосферы, как совокупности наук и перечислены влияющие на нее факторы.

Приведен некоторый перечень достижений: гипотез, разработок и открытий, которые отмечают известные вехи в истории этой совокупности наук и дают определенное представление о круге рассматриваемых ею проблем и задач.

Описаны отличительные особенности общей циркуляции атмосферы, а также представлена простейшая схема общей циркуляции под названием «машина планеты».

1. Общие сведения о циркуляции атмосферы

Общая циркуляция атмосферы (лат. Circulatio - вращение, греч. atmos - пар и sphaira - шар) – это совокупность воздушных течений крупного масштаба в тропо- и стратосферах. В результате происходит обмен воздушными массами в пространстве, что способствует перераспределению тепла и влаги.

Общей циркуляцией атмосферы называют круговорот воздуха на земном шаре, приводящий к переносу его из низких широт в высокие и обратно.

Общая циркуляция атмосферы определяется зонами высокого атмосферного давления в приполярных областях и тропических широтах и зонами низкого давления в умеренных и экваториальных широтах.

Перемещение воздушных масс происходит как в широтном, так и в меридиональном направлениях. В тропосфере к циркуляции атмосферы относятся пассаты, западные воздушные течения умеренных широт, муссоны, циклоны и антициклоны.

Причина перемещения воздушных масс состоит в неодинаковом распределении атмосферного давления и нагревании Солнцем поверхности суши, океанов, льда на разных широтах, а также в отклоняющем воздействии на воздушное потоки вращения Земли.

Главные закономерности циркуляции атмосферы постоянны.

В нижней стратосфере струйные течения воздуха в умеренных и субтропических широтах преимущественно западные, а в тропических - восточные, и идут они со скоростью до 150 м/с (540 км/час) относительно земной поверхности.

В нижней тропосфере преобладающие направления переноса воздуха различаются по географическим поясам.

В полярных широтах восточные ветры; в умеренных - западные с частым нарушением циклонами и антициклонами, наиболее устойчивы пассаты и муссоны в тропических широтах.

В связи с разнообразием подстилающей поверхности на форме общей циркуляции атмосферы возникают районные отклонения - местные ветры.

2. Факторы, определяющие общую циркуляцию атмосферы

– Неравномерное распределение солнечной энергии по земной поверхности и как следствие, неравномерное распределение температуры и атмосферного давления.

– Силы Кориолиса и трения, под влиянием которых воздушные потоки приобретают широтное направление.

– Влияние подстилающей поверхности: наличие материков и океанов, неоднородность рельефа и др.

Распределение воздушных течений в земной поверхности имеет зональный характер. В экваториальных широтах – затишье или наблюдаются слабые переменных ветры. В тропической зоне господствуют пассаты.

Пассаты – постоянные ветры, дующие от 30-х широт к экватору, имеющие в северном полушарии северо-восточное, в южном – юго-восточное направления. В 30-35? с. и ю.ш. – зона затишья, т.наз. «конские широты».

В умеренных широтах преобладают западные ветры (в северном полушарии юго-западные, в южном – северо-западные). В полярных широтах дуют восточные (в северном полушарии северо-восточные, в южном – юго-восточные) ветры.

В действительности система ветров над земной поверхностью гораздо сложнее. В субтропическом поясе во многих районах пассатный перенос нарушается летними муссонами.

В умеренных и субполярных широтах огромное влияние на характер воздушных течений оказывают циклоны и антициклоны, а на восточных и северных побережьях – муссоны.

Кроме этого, во многих районах образуются местные ветры, обусловленные особенностями территории.

3. Циклоны и антициклоны.

Для атмосферы характерны вихревые движения, крупнейшими из которых являются циклоны и антициклоны.

Циклон – это восходящий атмосферный вихрь с пониженным давлением в центре и системой ветров от периферии к центру, направленных в северном полушарии против, в южном – по часовой стрелке. Циклоны делят на тропические и внетропические. Рассмотрим внетропические циклоны.

Диаметр внетропических циклонов в среднем около 1000 км, но бывают и более 3000 км. Глубина (давление в центре) – 1000-970 гПа и менее. В циклоне дуют сильные ветры, обычно до 10-15 м/сек, но могут достигать 30 м/сек и более.

Средняя скорость перемещения циклона – 30-50 км/час. Чаще всего циклоны перемещаются с запада на восток, но иногда идут с севера, юга и даже востока. Зона наибольшей повторяемости циклонов – 80-е широты северного полушария.

Циклоны приносят пасмурную, дождливую, ветреную погоду, летом – похолодание, зимой – потепление.

Тропические циклоны (ураганы, тайфуны) образуются в тропических широтах, это одно из наиболее грозных и опасных явлений природы. Их диаметр несколько сотен километров (300-800 км, редко более 1000 км), но характерна большая разница в давлении между центром и периферией, что вызывает сильные ураганные ветры, тропические ливни, сильные грозы.

Антициклон – это нисходящий атмосферный вихрь с повышенным давлением в центре и системой ветров от центра к периферии, направленных в северном полушарии по часовой стрелке, в южном – против. Размеры антициклонов такие же, как у циклонов, но в поздней стадии развития могут достигать до 4000 км в диаметре.

Атмосферное давление в центре антициклонов обычно 1020-1030 гПа, но может достигать и более 1070 гПа. Наибольшая повторяемость антициклонов – над субтропическими зонами океанов. Для антициклонов характерна малооблачная, без осадков погода, со слабыми ветрами в центре, зимой – сильные морозы, летом – жара.

4. Ветра, влияющие на общую циркуляцию атмосферы

Муссоны. Муссоны – сезонные ветры, изменяющие направление два раза в год. Летом они дуют с океана на сушу, зимой – с суши на океан. Причина образования – неодинаковое нагревание по сезонам года суши и воды. В зависимости от зоны образования муссоны делят на тропические и внетропические.

Внетропические муссоны особенно выражены на восточной окраине Евразии. Летний муссон приносит с океана влагу и прохладу, зимний дует с материка, понижая температуру и влажность.

Тропические муссоны наиболее выражены в бассейне Индийского океана. Летний муссон дует от экватора, он противоположен пассату и приносит облачность, осадки, смягчает летнюю жару, зимний – совпадает с пассатом, усиливает его, принося сухость.

Местные ветры. Местные ветры имеют локальное распространение, их образование связано с особенностями данной территории – близостью водоемов, характером рельефа. Наиболее распространены бризы, бора, фён, горно-долинные и стоковые ветры.

Бризы (легкий ветер-фр) – ветры по берегам морей, крупных озер и рек, дважды в сутки меняющие направление на противоположное: дневной бриз дует с водоема на берег, ночной бриз – с берега на водоем. Бризы обусловлены суточным ходом температуры и соответственно давления над сушей и водой. Они захватывают слой воздуха 1-2 км.

Скорость их невелика – 3-5 м/с. Очень сильный дневной морской бриз наблюдается на западных пустынных побережьях материков в тропических широтах, омываемых холодными течениями и холодной водой, поднимающейся у берега в зоне апвеллинга.

Там он вторгается вглубь суши на десятки километров и производит сильный климатический эффект: снижает температуру, особенно летом на 5-70 С, а в западной Африке до 100С, увеличивает относительную влажность воздуха до 85%, способствует образованию туманов и рос.

Явления, подобные дневным морским бризам можно наблюдать по окраинам больших городов, где отмечается циркуляция более холодного воздуха из пригородов к центру, т.к над городами существуют «тепловые пятна» в течение всего года.

Горно-долинные ветры обладают суточной периодичностью: днем ветер дует вверх по долине и по горным склонам, ночью- наоборот охлажденный воздух спускается вниз. Дневной подъем воздуха приводит к образованию кучевых облаков над склонами гор, ночью при опускании и адиабатическом нагревании воздуха облачность исчезает.

Ледниковые ветры – это холодные ветры, постоянно дующие со стороны горных ледников вниз по склонам и долинам. Они обусловлены выхолаживанием воздуха надо льдом. Их скорость 5-7 м/с, мощность несколько десятков метров. Они интенсивнее ночью, так как усиливаются ветрами склонов.

Общая циркуляция атмосферы

1) Из-за наклона земной оси и шарообразности Земли экваториальные районы получают больше солнечной энергии, чем полярные.

2) На экваторе воздух нагревается → расширяется → поднимается вверх → образуется область низкого давления. 3) На полюсах воздух охлаждается → уплотняется → опускается вниз → образуется область высокого давления.

4) Из-за разницы атмосферного давления воздушные массы начинают двигаться от полюсов к экватору.

На направление и скорость ветров ещё влияют:

  • свойства воздушных масс (влажность, температура…)
  • подстилающая поверхность (океаны, горные массивы и т.д.)
  • вращение земного шара вокруг своей оси (сила Кориолиса)1) общая (глобальная) система воздушных течений над земной поверхностью, горизонтальные размеры которой соизмеримы с материками и океанами, а толщина от нескольких км до десятков км.

Пассаты – это постоянные ветры, дующие от тропиков к экватору.

Причина: на экваторе всегда низкое давление (восходящие потоки), а в тропиках всегда высокое давление (нисходящие потоки).

Из-за действия силы Кориолиса: пассаты Северного полушария имеют северо-восточное направление (отклоняются вправо)

Пассаты Южного полушария – юго-восточное (отклоняются влево)

Северо-восточные ветры (в Северном полушарии) и юго-восточные ветры (в Южном полушарии).
Причина: воздушные потоки двигаются от полюсов к умеренным широтам и под действием силы Кориолиса отклоняются к западу. Западные ветры – ветры, дующие от тропиков в умеренные широты преимущественно с запада на восток.

Причина: в районе тропиков высокое давление, а в умеренных широтах – низкое, поэтому часть воздуха из области В.Д, движется в область Н,Д,. При движении под воздействием силы Кориолиса воздушные потоки отклоняются к востоку.

В Эстонию западные ветры приносят тёплый и влажный воздух, т.к. воздушные массы формируются над водами тёплого Северо-Атлантического течения.

Воздух в циклоне движется от периферии к центру;

В центральной части циклона воздух поднимается и

Охлаждается, поэтому образуются облака и осадки;

При циклонах преобладает пасмурная погода с сильными ветрами:

летом – дождливая и прохладная,
зимой – с оттепелями и снегопадами.

Антициклон – это область повышенного атмосферного давления с максимумом в центре.
воздух в антициклоне движется от центра к периферии; в центральной части антициклона воздух опускается и нагревается, его влажность падает, облака рассеиваются; при антициклонах устанавливается ясная безветренная погода:

летом – жаркая,

зимой – морозная.

Циркуляция атмосферы

Определение 1

Циркуляция – это система движения воздушных масс.

Циркуляция может быть общей в масштабах всей планеты и местной циркуляцией, которая происходит над отдельными территориями и акваториями. К местной циркуляции относятся дневные и ночные бризы, возникающие на побережьях морей, горно-долинные ветры, ледниковые ветры и др.

Местная циркуляция в определенное время и в определенных местах может налагаться на течения общей циркуляции. При общей циркуляции атмосферы в ней возникают огромные волны и вихри, которые по-разному развиваются и перемещаются.

Такими атмосферными возмущениями являются циклоны и антициклоны, являющиеся характерными чертами общей циркуляции атмосферы.

В результате движения воздушных масс, которое происходит под действием центров атмосферного давления, территории обеспечиваются влагой. В результате того, что в атмосфере одновременно существуют движения воздуха разных масштабов, накладывающихся друг на друга, атмосферная циркуляция является очень сложным процессом.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Движение воздушных масс в планетарном масштабе складывается под влиянием 3-х главных факторов:

  • Зональное распределение солнечной радиации;
  • Осевое вращение Земли и, как следствие, отклонение воздушных потоков от градиентного направления;
  • Неоднородность поверхности Земли.
  • Данные факторы усложняют общую циркуляцию атмосферы.

    Если бы Земля была однородна и не вращалась вокруг своей оси – тогда температура и давление у поверхности земли отвечало бы термическим условиям и носило широтный характер. Это значит, что уменьшение температуры происходило бы от экватора к полюсам.

    При таком распределении теплый воздух на экваторе поднимается вверх, а на полюсах холодный воздух опускается вниз. В результате на экваторе в верхней части тропосферы происходило бы его скопление, и давление было бы высоким, а на полюсах – пониженным.

    На высоте при этом воздух оттекал бы в том же направлении и приводил к уменьшению давления над экватором и его росту над полюсами. Отток воздуха вблизи земной поверхности происходил бы от полюсов, где давление высокое к экватору в меридиональном направлении.

    Получается, что термическая причина является первой причиной циркуляции атмосферы – разная температура приводит к разному давлению на разных широтах. В реальной действительности над экватором давление низкое, а у полюсов – высокое.

    На однородной вращающейся Земле в верхней тропосфере и нижней части стратосферы ветры при их оттоке к полюсам, в северном полушарии должны отклоняться вправо, в южном полушарии – влево и при этом становиться западными.

    В нижней тропосфере ветры, оттекая от полюсов в сторону экватора и отклоняясь, стали бы в северном полушарии восточными, а в южном – юго-восточными. Хорошо просматривается вторая причина циркуляции атмосферы – динамическая. Зональная слагающая общей циркуляции атмосферы обусловлена вращением Земли.

    Существенное влияние на общую циркуляцию атмосферы оказывает подстилающая поверхность с неравномерным распределением суши и воды.

    Циклоны

    Для нижнего слоя тропосферы характерными являются вихри, которые появляются, развиваются и исчезают. Одни вихри очень маленькие и остаются незамеченными, другие же оказывают большое влияние на климат планеты. Прежде всего, это относится к циклонам и антициклонам.

    Определение 2

    Циклон – это огромный атмосферный вихрь с низким давлением в центре.

    В Северном полушарии воздух в циклоне движется против хода часовой стрелки, в Южном полушарии – по часовой стрелке. Циклоническая деятельность в средних широтах является особенностью атмосферной циркуляции.

    Циклоны возникают благодаря вращению Земли и отклоняющей силе Кориолиса, и в своем развитии проходят стадии от зарождения до заполнения. Как правило, возникновение циклонов происходит на атмосферных фронтах.

    Две противоположные по температуре воздушные массы, разделенные фронтом, вовлекаются в циклон. Теплый воздух на поверхности раздела внедряется в область холодного воздуха и отклоняется в высокие широты.

    Равновесие нарушается, и холодный воздух в тыловой части вынужден внедряться в низкие широты. Возникает циклонический изгиб фронта, который представляет собой огромную волну, двигающуюся с запада на восток.

    Стадия волны – это первая стадия развития циклона.

    Теплый воздух поднимается и скользит по фронтальной поверхности в передней части волны. Возникшие волны длиной $1000$ км и более в пространстве неустойчивы и продолжают свое развитие.

    Циклон при этом со скоростью $100$ км в сутки смещается на восток, давление продолжает падать, а ветер становится сильнее, амплитуда волны увеличивается. Это вторая стадия – стадия молодого циклона.

    На специальных картах молодой циклон оконтуривается несколькими изобарами.

    С продвижением теплого воздуха в высокие широты образуется теплый фронт, а продвижение холодного воздуха в тропические широты образует холодный фронт. Оба фронта являются частями единого целого. Теплый фронт движется медленнее холодного фронта.

    Если холодный фронт догоняет теплый и смыкается с ним – образуется фронт окклюзии . Теплый воздух поднимается вверх и закручивается в виде спирали. Это третья стадия развития циклона – стадия окклюдирования.

    Четвертая стадия – его заполнение – является заключительной. Происходит окончательное оттеснение теплого воздуха вверх и его охлаждение, температурные контрасты исчезают, по всей своей площади циклон становится холодным, замедляет движение и окончательно заполняется. От зарождения до заполнения жизнь циклона продолжается от $5$ до $7$ дней.

    Замечание 1

    Циклоны несут пасмурную, прохладную и дождливую погоду летом и оттепели зимой. Летние циклоны движутся со скоростью $400$-$800$ км в сутки, зимние – до $1000$ км в сутки.

    Антициклоны

    Циклоническая деятельность связана с возникновением и развитием фронтальных антициклонов.

    Определение 3

    Антициклон – это огромный атмосферный вихрь с высоким давлением в центре.

    Образуются антициклоны в тылу холодного фронта молодого циклона в холодном воздухе и имеют свои стадии развития.

    В развитии антициклона выделяется только три стадии:

  • Стадия молодого антициклона, который представляет собой низкое подвижное барическое образование. Он, как правило, перемещается со скорость циклона, находящегося впереди него. В центре антициклона давление постепенно растет. Преобладает ясная, безветренная, малооблачная погода;
  • На второй стадии происходит максимальное развитие антициклона. Это уже высокое барическое образование с наибольшим давлением в центре. Максимально развитый антициклон может иметь размеры до нескольких тысяч километров в диаметре. В его центре формируются приземная и высотная инверсии. Погода ясная и тихая, но при высокой влажности возникает туман, дымка, слоистая облачность. По сравнению с молодым антициклоном максимально развитый антициклон перемещается значительно медленнее;
  • Третья стадия связана с разрушением антициклона. Это высокое, теплое и малоподвижное барическое образование Стадия характеризуется постепенным падением давления воздуха и развитием облачности. Разрушение антициклона может происходить на протяжении нескольких недель, а иногда и месяцев.
  • Общая циркуляция атмосферы

    Объектами изучения общей циркуляции атмосферы являются перемещающиеся циклоны и анти­циклоны умеренных широт с их быстроизменяющейся метеорологической обстановкой: пассаты, муссоны, тропические циклоны и т. п. Типичные черты об­щей циркуляции атмосферы, устойчивые во времени или повторяющиеся чаще других, выявляются при осредне­нии метеорологических элементов за длительные много­летние периоды наблюдений,

    На рис. 8, 9 приведено среднее многолетнее распре­деление ветра у земной поверхности в январе и июле. В январе, т. е.

    зимой, в Северном полушарии отчетливо видны гигантские антициклонические вихри над Север­ной Америкой и особенно интенсивный вихрь - над Центральной Азией.

    Летом антициклонические вихри над сушей разрушаются в связи с прогревом материка, а над океанами такие вихри значительно усиливаются и распространяются к северу.

    Давление у поверхности Земли в миллибарах и преобладающие воздушные течения

    В связи с тем, что в тропосфере воздух в экватори­альных и тропических широтах прогрет значительно ин­тенсивнее, чем в полярных областях, температура возду­ха и давление постепенно понижаются в направлении от экватора к полюсам. Как говорят метеорологи, планетарный градиент тем­пературы и давления направлены в средней тропосфере от экватора к полюсам.

    (В метеорологии градиент тем­пературы и давления берется в обратном направлении, по сравнению с физикой.) Воздух является легкоподвижной средой. Если бы Земля не вращалась вокруг своей оси, то в нижних сло­ях атмосферы воздух перетекал бы от экватора к полю­сам, а в верхних слоях возвращался бы обратно к эква­тору.

    Но Земля вращается с угловой скоростью 2п/86400 радиан в секунду. Частицы воздуха, переходя от низких широт в высокие, сохраняют большие линейные скоро­сти относительно земной поверхности, приобретенные в низких широтах, и поэтому отклоняются при своем движении к востоку. Образуется западно-восточный перенос воздуха в тропосфере, который отражен на рис. 10.

    Од­нако такой правильный режим течений наблюдается только на картах средних значений. «Моментальные снимки» воздушных течений дают очень разнообразные, каждый раз новые не повторяющиеся положения цик­лонов, антициклонов, воздушных потоков, зон встреч теплого и холодного воздуха, т. е. атмосферных фронтов.

    Атмосферные фронты играют большую роль в общей циркуляции атмосферы, поскольку в них проис­ходят значительные преобразования энергии воздушных масс из одного вида в другой.

    На рис. 10 схематически представлено положение основных фронтальных разделов в средней тропосфере и у земной поверхности. С атмосферными фронтами и фронтальными зонами связаны многочисленные явления погоды.

    Здесь зарождаются циклонические и антицик­лонические вихри, происходит образование мощной облачности и зон осадков, усиление ветра.

    При прохожде­нии атмосферного фронта через данный пункт обычно отчетливо наблюдается заметное похолодание или по­тепление, резко изменяется весь характер погоды. Инте­ресные особенности обнаруживаются в структуре стра­тосферы.

    Планетарная фронтальная зона в средней тропосфере

    Если в тропосфере у экватора располагаются теплы; воздушные массы, а у полюсов - холодные, то в стра­тосфере, особенно в теплую половину года, дело обстоит как раз наоборот, у полюсов здесь воздух относительно более теплый, а у экватора - холодный.

    Градиент тем­пературы и давления направлены в обратную по отно­шению к тропосфере сторону.

    Влияние отклоняющей си­лы вращения Земли, которое приводило в тропосфера к образованию западно-восточного переноса, создает в стратосфере зону восточно-западных ветров.

    Среднее расположение осей струйных течений в Северном полушарии зимой

    Наибольшие скорости ветра, а следовательно, и наи­большая кинетическая энергия воздуха наблюдаются в струйных течениях.

    Образно говоря, струйные те­чения - это воздушные реки в атмосфере, реки-, текущие у верхней границы тропосферы, в слоях, отделяющих тропосферу от стратосферы, т. е. в слоях, близких к тропопаузе (рис. 11 и 12).

    Скорость ветра в струйных те­чениях достигает 250 - 300 км/ч - зимой; и 100 - 140 км/ч - летом. Таким образом, тихоходный самолет, попадая в такое струйное течение, может лететь «вспять».

    Среднее расположение осей струйных течений в Северном полушарии летом

    Протяженность струйных течений достигает несколь­ких тысяч километров. Ниже струйных течений в тропосфере наблюдаются более широкие и менее быстрые воздушные «реки» - планетарные высотные фронтальные зоны, также играющие большую роль в общей циркуляции атмосферы.

    Возникновение боль­ших скоростей ветра в струйных течениях и в планетар­ных высотных фронтальных зонах происходит из-за на­личия здесь большой разницы температур воздуха меж­ду соседними воздушными массами.

    Наличие разницы в температуре воздуха, или, как говорят, «температурно­го контраста», приводит к увеличению ветра с высотой. Теория показывает, что такое увеличение про­порционально горизонтальному градиенту температуры рассматриваемого слоя воздуха.

    В стратосфере в связи с обращением меридионального градиента температуры воздуха на обратный, интенсивность струйных течений идет на убыль, и они исчезают.

    Несмотря на большую протяженность планетарных высотных фронтальных зон и струйных течений, они, как правило, не опоясывают весь земной шар, а оканчиваются там, где горизонталь­ные контрасты температуры между воздушными масса­ми ослабевают. Наиболее часто и резко контрасты тем­пературы проявляются в полярном фронте, отделяющем воздух умеренных широт от тропического воздуха.

    Положение оси высотной фронтальной зоны при незначительном меридиональном обмене воздушных масс

    Планетарные высотные фронтальные зоны и струй­ные течения часто возникают в системе полярно­го фронта. Хотя в среднем планетарные высотные фрон­тальные зоны имеют направление с запада на восток, в конкретных случаях направление их осей весьма разно­образно. Чаще всего в умеренных широтах они имеют волнообразный характер. На рис.

    13, 14 представлены положения осей высотных фронтальных зон в случаях устойчивого западно-восточного переноса и в случаях развитого меридионального обмена воздушных масс.

    Существенная особенность воздушных течений в стра­тосфере и мезосфере над экваториальной и тропической областями заключается в существовании там несколь­ких слоев воздуха с почти противоположным направле­нием сильных ветров.

    Возникновение и развитие этой многослойной структуры поля ветра здесь меняется че­рез определенные, но не вполне точно совпадающие про­межутки времени, что также может служить некоторым прогностическим признаком.

    Если добавить к этому, что явление резкого потепления в полярной стратосфере, ре­гулярно происходящее зимой, некоторым образом свя­зано с процессами в стратосфере, происходящими в тро­пических широтах, и с тропосферными процессами уме­ренных и высоких широт, то станет ясно, как сложно и прихотливо развиваются те атмосферные процессы, ко­торые непосредственно влияют на режим погоды в уме­ренных широтах.

    Положение оси высотной фронтальной зоны при значительном меридиональном обмене воздушных масс

    Огромное значение для формирования атмосферных процессов большого масштаба имеет состояние подсти­лающей поверхности, особенно состояние верхнего дея­тельного слоя воды Мирового океана. Поверхность Ми­рового океана составляет почти 3/4 всей поверхности Земли (рис. 15).

    Морские течения

    Благодаря большой теплоемкости и способности легко перемешиваться, океанические воды надолго запа­сают тепло во время встреч с теплым воздухом в уме­ренных широтах и в течение всего года в южных широ­тах. Запасенное тепло с морскими течениями выносится далеко к северу и отепляет близлежащие районы.

    Теплоемкость воды в несколько раз больше, чем теп­лоемкость почвы и горных пород, составляющих сушу. Нагретая водная масса служит как бы аккумулятором тепла, которым она снабжает атмосферу. Следует отме­тить при этом, что суша отражает солнечные лучи зна­чительно лучше, чем поверхность океана.

    Особенно хо­рошо отражает солнечные лучи поверхность снега и льда; 80-85% всей солнечной радиации, падающей на снег, отражается от него. Поверхность моря, наоборот, поглощает почти всю радиацию, которая на нее падает (55-97%). В результате всех этих процессов атмосфе­ра непосредственно от Солнца получает только 1/3 всей приходящей энергии.

    Остальные 2/3 энергии она получа­ет от нагретой Солнцем подстилающей поверхности, прежде всего от водной поверхности. Передача тепла от подстилающей поверхности в атмос­феру происходит несколькими путями. Во-первых, большое количество солнечного тепла затрачивается на ис­парение влаги с поверхности океана в атмосферу.

    При конденсации этой влаги освобождается тепло, которое нагревает окружающие слои воздуха. Во-вторых, под­стилающая поверхность отдает тепло в атмосферу путем турбулентного (т. е. вихревого, неупорядоченного) теп­лообмена. В-третьих, тепло передается путем теплового электромагнитного излучения. В результате взаимодействия океана с атмосферой в последней происходят важные изменения.

    Слой атмос­феры, в который проникает тепло и влага океана, в слу­чаях вторжения холодного воздуха на теплую океани­ческую поверхность достигает 5 км и более. В тех слу­чаях, когда на холодную водную поверхность океана вторгается теплый воздух, высота, на которую распрост­раняется влияние океана, не превышает 0,5 км.

    В слу­чаях вторжения холодного воздуха толщина его слоя, на которую распространяется влияние океана, зависит прежде всего от величины разности температуры вода - воздух. Если вода теплее воздуха, то развивается мощ­ная конвекция, т. е. неупорядоченные восходящие дви­жения воздуха, которые и приводят к проникновению тепла и влаги в высокие слои атмосферы.

    Наоборот, ес­ли воздух теплее воды, то конвекция не возникает и воздух изменяет свои свойства только в самых нижних слоях. Над теплым течением Гольфстрим в Атлантическом океане при вторжении очень холодного воздуха теплоотдача океана может доходить до 2000 кал/см2 в сутки и распространяется на всю тропосферу.

    Теплый воздух может потерять над холодной океанической по­верхностью 20-100 кал/см2 в сутки. Изменение свойств воздуха, попадающего на теплую или холодную океаническую поверхность, происходит довольно быстро - такие изменения можно заметить на уровне 3 или 5 км уже через сутки после начала втор­жения.

    Какие же приращения температуры воздуха мо­гут быть в результате его трансформации (изменения) над водной подстилающей поверхностью? Оказывается, в холодное полугодие атмосфера над Атлантикой в сред­нем прогревается на 6°, а иногда может прогреться и на 20° в сутки. Охладиться атмосфера может на 2-10° в сутки. Подсчитано, что на севере Атлантическо­го океана, т. е.

    там, где происходит наиболее интенсивная передача тепла от океана в атмосферу, океан отдает в 10-30 раз тепла больше, чем получает его от атмос­феры. Естественно при этом, что запасы тепла в океане восполняются притоком теплых океанических вод из тропических широт. Потоки воздуха распространяют по­лученное от океана тепло на тысячи километров. Отеп­ляющее’ влияние океанов в зимнее время приводит к тому, что разница температуры воздуха между северо-восточными частями океанов и континентов составляет на широтах 45-60° у земной поверхности 15-20°, в сред­ней тропосфере 4-5°. Хорошо изучено, например, отеп­ляющее влияние океана на климат Северной Европы.

    Северо-западная часть Тихого океана зимой находит­ся под влиянием холодного воздуха Азиатского конти­нента, так называемого зимнего муссона, распро­страняющегося на 1-2 тыс. км в глубь океана в привод­ном слое и на 3-4 тыс. км в средней тропосфере (рис. 16).

    Годовые суммы тепла, переносимого морскими течениями

    Летом над океаном холоднее, чем над материками, поэтому воздух, поступающий с Атлантического океана, охлаждает Европу, а воздух Азиатского континента утепляет Тихий океан. Однако описанная выше картина ха­рактерна для средних условий циркуляции.

    Междусуточ­ные изменения в величине и в направлении потоков теп­ла от подстилающей поверхности в атмосферу и обрат­но очень разнообразны и оказывают большое влияние на изменение самих атмосферных процессов.

    Существуют гипотезы, согласно которым особенности развития теплообмена между различными участками подстилаю­щей поверхности и атмосферой обусловливают устойчи­вый характер атмосферных процессов в течение длитель­ных промежутков времени.

    Если над аномально (свыше нормы) теплой водной поверхностью той или иной части Мирового океана в умеренных широтах Северного полушария воздух прог­ревается, то в средней тропосфере образуется область повышенного давления (барический гребень), по восточ­ной периферии которого начинается перенос холодных масс воздуха из Арктики, а по западной его части - пе­ренос теплого воздуха из тропических широт к северу. Такая ситуация может привести к сохранению у земной поверхности в определенных районах длительной анома­лии погоды - сухой и жаркой или дождливой и прох­ладной летом, морозной и сухой или теплой и снежной зимой. Весьма значительную роль в формировании атмос­ферных процессов путем регулирования поступления солнечного тепла к земной поверхности играет облач­ность. Облачный покров значительно увеличивает долю отраженной радиации и этим уменьшает нагрев земной поверхности, что, в свою очередь, влияет на характер синоптических процессов. Получается некоторое подобие обратной связи: характер циркуляции атмосферы влияет на создание облачных систем, а облачные систе­мы, в свою очередь, влияют на изменение циркуляции. Мы перечислили только главнейшие из изучаемых «зем­ных» факторов, влияющих на формирование погоды и циркуляции воздуха. Особую роль в исследовании причин изменения об­щей ЦИРКУЛЯЦИИ атмосферы играет деятельность Солнца. Здесь следует различать изменения циркуляции воздуха на Земле в связи с изменениями общего потока тепла, приходящего от Солнца на Землю в результате колебаний величины так называемой солнечной постоянной. Однако, как показывают последние исследования, в действительности она не является строго постоянной величиной. Энергия циркуляции атмосферы непрерывно попол­няется за счет энергии, посылаемой Солнцем. Поэтому, если суммарная энергия, посылаемая Солнцем, колеб­лется в значительных размерах, то это может сказаться на изменении циркуляции и погоды на Земле. Этот воп­рос еще недостаточно изучен. Что касается изменения солнечной активности, то хо­рошо известно, что на поверхности Солнца возникают различные возмущения, солнечные пятна, факелы, флокулы, протуберанцы и т. п. Эти возмущения вызывают временные изменения состава солнечной радиации, уве­личивается ультрафиолетовая составляющая и корпу­скулярное (т. е. состоящее из заряженных частиц, глав­ным образом протонов) излучение Солнца. Некоторые метеорологи считают, что изменение сол­нечной активности связано с тропосферными процессами в атмосфере Земли, т. е. с погодой.

    Последнее утверждение нуждается в дополнитель­ных исследованиях, главным образом вследствие того факта, что хорошо проявляющийся 11-летний цикл сол­нечной активности не четко выявляется в погодных ус­ловиях на Земле.

    Известно, что существуют целые школы метеорологов-прогнозистов, довольно удачно предсказы­вающих погоду в связи с изменениями солнечной актив­ности.

    Ветер и общая циркуляция атмосферы

    Ветром называется движение воздуха из районов с более высоким давлением воздух в область более низкого давления. Скорость ветра определяется величиной разности атмосферного давления.

    Влияние ветра в судовождении необходимо постоянно учитывать, т. к. он вызывает дрейф судна, штормовое волнение и т.п.
    Из-за неравномерности нагревания различных частей земного шара существует система атмосферных течений планетарного масштаба (общая циркуляция атмосферы).

    Воздушный поток состоит из отдельных вихрей, беспорядочно перемещающихся в пространстве. Поэтому скорость ветра, измеряемая в какой-либо точке,беспрерывно меняется во времени. Наибольшие колебания скорости ветра наблюдаются в приводном слое. Для того чтобы иметь возможность сопоставлять скорости ветра, за стандартную высоту была принята высота 10 метров над уровнем моря.

    Скорость ветра выражают в метрах в секунду, силу ветра – в баллах. Соотношение между ними определено шкалой Бофорта.

    Шкала Бофорта

    Колебания скорости ветра характеризуются коэффициентом порывистости,под которым понимается отношение максимальной скорости порывов ветра к его средней скорости, полученной за 5 – 10 минут.
    С возрастанием средней скорости ветра коэффициент порывистости уменьшается. При больших скоростях ветра коэффициент порывистости равен примерно 1,2 – 1,4.

    Пассаты – ветры, дующие весь год в одном направлении в зоне от экватора до 35° с. ш. и до 30° ю. ш. Устойчивы по направлению: в северном полушарии – северо-восточные, в южном – юго-восточные. Скорость – до 6 м/с.

    Муссоны – ветры умеренных широт, летом дующие с океана на материк,зимой – с материка на океан. Достигают скорости 20 м/с. Муссоны приносят на побережье зимой сухую ясную и холодную погоду, летом – пасмурную, с дождями и туманами.

    Бризы возникают вследствие неравномерного нагрева воды и суши в течение суток. В дневное время возникает ветер с моря на сушу (морской бриз). Ночью с охлажденного побережья – на море (береговой бриз). Скорость ветра 5 – 10 м/с.

    Местные ветры возникают в отдельных районах вследствие особенностей рельефа и резко отличаются от общего воздушного потока: возникают в результате неравномерного прогрева (охлаждения) подстилающей поверхности. Подробные сведения о местных ветрах даются в лоциях и гидрометеорологических описаниях.

    Бора – сильный и порывистый ветер, направленный вниз по горному склону. Приносит значительное похолодание.

    Наблюдается в местностях, где невысокий горный хребет граничит с морем, в периоды, когда над сушей увеличивается атмосферное давление и понижается температура по сравнению с давлением и температурой над морем.

    В районе Новороссийской бухты бора действует в ноябре – марте со средними скоростями ветра около 20 м/с (отдельные порывы могут быть 50 – 60 м/с). Продолжительность действия от одних до трех суток.

    Аналогичные ветры отмечаются на Новой Земле, на средиземноморском побережье Франции (мистраль) и у северных берегов Адриатического моря.

    Сирокко – горячий и влажный ветер центральной части Средиземного моря сопровождается облачностью и осадками.

    Смерчи – вихри над морем диаметром до нескольких десятков метров, состоящие из водяных брызг. Существуют до четверти суток и движутся со скоростью до 30 узлов. Скорость ветра внутри смерча может доходить до 100 м/с.

    Штормовые ветры возникают преимущественно в областях с пониженным атмосферным давлением. Особенно большой силы достигают тропические циклоны, при которых скорость ветра нередко превышает 60 м/с.

    Сильные штормы наблюдаются и в умеренных широтах. При движении воздушные теплые и холодные массы воздуха неизбежно соприкасаются друг с другом.

    Переходная зона между этими массами называется атмосферным фронтом. Прохождение фронта сопровождается резким изменением погоды.

    Атмосферный фронт может находиться в стационарном состоянии или в движении. Различают теплые, холодные фронты, а также фронты окклюзии. Основными атмосферными фронтами являются: арктические, полярные и тропические. На синоптических картах фронты изображают в виде линий (линия фронта).

    Тёплый фронт образуется при наступлении теплых воздушных масс на холодные. На картах погоды тёплый фронт отмечается сплошной линией с полукругами вдоль фронта, указывающими в сторону более холодного воздуха и направление движения.

    По мере приближения тёплого фронта начинает падать давление, уплотняются облака, выпадают обложные осадки. Зимой при прохождении фронта обычно появляются низкие слоистые облака. Температура и влажность воздуха медленно повышаются.

    При прохождении фронта температура и влажность обычно быстро возрастают, ветер усиливается. После прохождения фронта направление ветра меняется (ветер поворачивает по часовой стрелке), падение давления прекращается и начинается его слабый рост, облака рассеиваются, осадки прекращаются.

    Холодный фронт образуется при наступлении холодных воздушных масс на более теплые (рис.18.2). На картах погоды холодный фронт изображается сплошной линией с треугольниками вдоль фронта, указывающими в сторону более теплых температур и направление движения. Давление перед фронтом сильно и неравномерно падает, судно попадает в зону ливней, гроз, шквалов и сильного волнения.

    Фронт окклюзии – это фронт, образованный слиянием теплого и холодного фронтов. Представляется сплошной линией с чередующимися треугольниками и полукругами.

    Разрез теплого фронта

    Разрез холодного фронта

    Циклон – атмосферный вихрь огромного (от сотен до нескольких тысяч километров) диаметра с пониженным давлением воздуха в центре. Воздух в циклоне циркулирует против часовой стрелки в северном полушарии и по часовой стрелке в южном.

    Различают два основных вида циклонов – внетропические и тропические.

    Первые образуются в умеренных или полярных широтах и имеют диаметр от тысячи километров в начале развития, и до нескольких тысяч в случае так называемого центрального циклона.

    Тропический циклон – циклон, образовавшийся в тропических широтах, это атмосферный вихрь с пониженным атмосферным давлением в центре со штормовыми скоростями ветра. Сформировавшиеся тропические циклоны движутся вместе с воздушными массами с востока на запад, при этом постепенно отклоняясь к высоким широтам.

    Для таких циклонов характерен также т. н. «глаз бури» – центральная область диаметром 20 – 30 км с относительно ясной и безветреной погодой. В мире ежегодно наблюдается около 80 тропических циклонов.

    Вид циклона из космоса

    Пути тропических циклонов

    На Дальнем Востоке и в Юго-Восточной Азии тропические циклоны называются тайфунами (от китайского тай фын – большой ветер), а в Северной и Южной Америке – ураганами (исп. huracán по имени индейского бога ветра).
    Принято считать, что шторм переходит в ураган при скорости ветра более 120 км/час, при скорости 180 км/час ураган называют сильным ураганом.

    7. Ветер. Общая циркуляция атмосферы

    Лекция 7. Ветер. Общая циркуляция атмосферы

    Ветер это движение воздуха относительно земной поверхности, в котором преобладает горизонтальная состаляющая. Когда рассматривается восходящее или нисходящее движение ветра, учитывается также и вертикальная составляющая. Ветер характеризуется направлением, скоростью и порывистостью.

    Причиной возникновения ветра является различие атмосферного давления в разных точках, определяемое горизонтальным барическим градиентом. Давление неодинаково прежде всего из-за разной степени нагревания и охлаждения воздуха и уменьшается с высотой.

    Для представ-ления о распределении давления на поверхности Земного шара, на географические карты наносят давление, измеренное в одно время в разных пунктах и приведенное к одинаковой высоте (например, к уровню моря). Пункты с одинаковым давлением соединяют линиями – изобарами .

    Таким образом выявляются области повышенного (антициклоны) и пониженного (циклоны) давления, направления их передвижения для прогнозирования погоды. По изобарам можно определить величину изменения давления с расстоянием.

    В метеорологии принято понятие горизонтального барического градиента – это изменение давления на 100 км по горизонтальной линии, перпендикулярной изобарам от высокого давления к низкому. Это изменение составляет обычно 1-2 гПа/100 км.

    Движение воздуха происходит в направлении градиента, но не по прямой, а сложнее, что обусловлено взаимодействием сил, отклоняющих воздух за счет вращения земли и трения. Под влиянием вращения Земли движение воздуха отклоняется от барического градиента вправо в северном полушарии, влево – в южном.

    Наибольшая величина отклонения наблюдается на полюсах, а на экваторе – близка к нулю. Сила трения умень-шает и скорость ветра, и отклонение от градиента в результате соприкосновения с поверхностью, а также – внутри воздушной массы из-за разной скоростей в слоях атмосферы. Совместное влияние этих сил отклоняет ветер от градиента над сушей на 45-55о, над морем – на 70-80о.

    С увеличением высоты увеличивается скорость ветра и его отклонение до 90о на уровне около 1 км.

    Скорость ветра измеряется обычно в м/сек, реже – в км/час и баллах. За направление принимается то, откуда дует ветер, определяемое в румбах (их 16) или угловых градусах.

    Для наблюдений за ветром используется флюгер , который устанавливается на высоте 10-12 м. Ручной анемометр используют для кратковременных наблюдений за скоростью в полевых опытах.

    Анеморумбометр позволяет дистанционно измерять направление и скорость ветра, анеморумбограф непрерывно регистрирует эти показатели.

    Суточный ход скорости ветра над океанами почти не наблюдается и хорошо выражен над сушей: в конце ночи – минимум, после полудня – максимум. Годовой ход определя-ется закономерностями общей циркуляции атмосферы и различается по районам Земного шара. Например, в Европе летом – минимальная скорость ветра, зимой – максимальная. В Восточной Сибири – наоборот.

    Направление ветра в конкретном месте меняется часто, но, если учитывать повторяемость ветров разных румбов, то можно определить, что некоторые бывают чаще. Для такого изучения направлений применяется график, называемый розой ветров. На каждой прямой всех румбов откладывают наблюдаемое число случаев ветра за нужный период и соединяют полученные значения на румбах линиями.

    Ветер способствует поддержанию постоянства газового состава атмосферы, перемешивая массы воздуха, переносит влажный морской воздух вглубь материков, обеспечивая их влагой.

    Неблагоприятное действие ветра для сельского хозяйства может проявляться в усилении испарения с поверхности почвы, вызывая засуху, возможна ветровая эрозия почв при больших скоростях ветра.

    Скорость и направление ветра необходимо учитывать при опылении полей ядохимикатами, при орошении дождевальными установками. Направление господствующих ветров надо знать при закладке лесных полос, снегозадержании.

    Местные ветры.

    Местными ветрами называют ветры, характерные только для определенных географических районов. Они имеют особое значение по своему влиянию на погодные условия, происхождение их различно.

    Бризы ветры у береговой линии морей и больших озер, которые имеют резкую суточную смену направления . Днем морской бриз дует на берег с моря, а ночью – береговой бриз дует с суши на море (рис.2).

    Они ярко выражены при ясной погоде в теплое время года, когда общий перенос воздуха слабый. В других случаях, например при прохождении цикло-нов, бризы могут маскироваться более сильными течениями.

    Движение ветра при бризах наблюдается в нескольких сотнях метров (до 1- 2 км), со средней скоростью 3 – 5 м/сек, а в тропиках – и более, проникая на десятки километров вглубь суши или моря.

    Развитие бризов связано с суточным ходом температуры поверхности суши. Днем суша нагревается сильнее, чем поверхность воды, давление над ней становится ниже и формируется перенос воздуха с моря на сушу. Ночью суша охлаждается быстрее и сильнее, воздух переносится с суши на море.

    Дневной бриз понижает температуру и увеличивает относительную влажность, что особенно резко выражено в тропиках. Например, в Западной Африке при движении морского воздуха на сушу температура может снизиться на 10оС и более, а относительная влажность – повышается на 40%.

    Бризы наблюдаются также на побережьях больших озер: Ладожского, Онежского, Байкал, Севан и др., а также – на больших реках. Однако в этих районах бризы меньше по своему горизонтальному и вертикальному развитию.

    Горно-долинные ветры наблюдаются в горных системах главным образом летом и схожи с бризами по своей суточной периодичности. Днем они дуют вверх по долине и по склонам гор в результате нагревания солнцем, а ночью, при охлаждении, воздух стекает вниз по склонам. Ночное движение воздуха может вызвать заморозки, что особенно опасно весной в период цветения садов.

    Фён теплый и сухой ветер, дующий с гор в долины. При этом значительно повышается температура воздуха и падает его влажность, иногда очень быстро. Они наблюдаются в Альпах, на Западном Кавказе, на Южном берегу Крыма, в горах Средней Азии, Якутии, на восточных склонах Скалистых гор и в других горных системах.

    Фён образуется при пересечении хребта воздушным течением. Так как с подветренной стороны создается разрежение, воздух засасывается вниз в виде нисходящего ветра. Опускающийся воздух нагревается по сухоадиабатическому закону: на 1оС на каждые 100 м спуска.

    Например, если на высоте 3000 м воздух имел температуру -8о и относительную влажность 100%, то, спустившись в долину, он нагреется до 22о, а влажность снизится до 17%. Если воздух поднимается по наветренному склону, то происходит кондесация водяного пара и образуются облака, выпадают осадки, а спускающийся воздух будет еще более сухим.

    Продолжительность фенов – от нескольких часов до нескольких суток. Фен может вызвать интенсивное таяние снегов и наводнения, иссушает почвы, растительность вплоть до их гибели.

    Бора это сильный, холодный, порывистый ветер, который дует с низких горных хребтов в сторону более теплого моря .

    Наиболее известна бора в Новороссийской бухте Черного моря и на Адриатическом побережье в районе г.Триеста. Сходны с борой по происхождению и проявлению норд в районе г.

    Баку, мистраль на Средиземноморском побережье Франции, нортсер в Мексиканском заливе.

    Бора возникает при прохождении холодных масс воздуха через прибрежный хребет. Воздух стекает вниз под силой тяжести, развивая скорость более 20 м/сек, при этом сильно понижается температура, иногда больше чем на 25оС. Бора затухает в нескольких километрах от берега, но иногда может захватывать значительную часть моря.

    В Новороссийске бора наблюдается около 45 дней в году, чаще с ноября по март, с продолжительностью до 3 суток, редко – до недели.

    Общая циркуляция атмосферы

    Общая циркуляция атмосферы это сложная система крупных воздушных течений, которые переносят очень большие массы воздуха над Земным шаром .

    В атмосфере у земной поверхности в полярных и тропических широтах наблюдается восточный перенос, в умеренных широтах – западный.

    Движение воздушных масс осложняется в результате вращения Земли, а также рельефом и воздействием областей высокого и низкого давления. Отклонение ветров от господствующих направлений составляет до 70о.

    В процессе нагревания и охлаждения огромных масс воздуха над Земным шаром образуются области высокого и низкого давления, определяющие направление планетарных воздушных течений. По многолетним средним величинам давления на уровне моря выявлены следующие закономерности.

    По обе стороны от экватора располагается зона низкого давления (в январе – между 15о северной широты и 25о южной широты, в июле – от 35о с.ш. до 5о ю.ш.). Эта зона, называемая экваториальной депрессией , распространяется больше на то полушарие, где в данном месяце лето.

    В направлении к северу и югу от нее давление растет и максимальных значений достигает в субтропических зонах повышенного давления (в январе – на 30 – 32о северной и южной широты, в июле – на 33-37о с.ш. и 26-30о ю.ш.). От субтропиков к умеренным зонам давление падает, особенно существенно – в южном полушарии.

    Минимум давления находится в двух субполярных зонах низкого давления (75-65о с.ш. и 60-65о ю.ш.). Дальше по направлению к полюсам давление вновь растет.

    В соответствии с изменениями давления располагается и меридиональный барический градиент. Он направлен от субтропиков с одной стороны – к экватору, с другой – к субполярным широтам, от полюсов субполярным широтам. С этим согласуется и зональное направление ветров.

    Над Атлантическим, Тихим и Индийским океанами очень часто дуют северо-восточные и юго-восточные ветры – пассаты . Западные ветры в южном полушарии, на широтах 40-60о, огибают весь океан.

    В северном полушарии в умеренных широтах западные ветры постоянно выражены только над океанами, а над материками направления сложнее, хотя западные также преобладают.

    Восточные ветры полярных широт отчетливо наблюдаются только по окраинам Антарктиды.

    На юге, востоке и севере Азии происходит резкое изменение направления ветров от января к июлю – это районы муссонов . Причины возникновения муссонов аналогичны причинам образования бризов. Летом материк Азии сильно нагревается и над ним распространяется область низкого давления, куда устремляются воздушные массы с океана.

    Образующийся летний муссон обуславливает выпадение больших количеств осадков, часто ливневого характера. Зимой над Азией устанавливается высокое давление из-за более интенсивного охлаждения суши, по сравнению с океаном и холодный воздух движется на океан, формируя зимний муссон с ясной сухой погодой. Муссоны проникают более чем на 1000 км в слое над сушей до 3-5 км.

    Воздушные массы и их классификация.

    Воздушная масса – это очень большое количество воздуха, которое занимает площадь в миллионы квадратных кило-метров.

    В процессе общей циркуляции атмосферы воздух расчленяется на отдельные воздушные массы, которые остаются длительное время над обширной территорией, приобретают определенные свойства и обусловливают различ-ные типы погоды.

    Перемещаясь в другие области Земли, эти массы приносят с собой свой режим погоды. Преобладание в конкретном районе воздушных масс определенного типа (типов) создает характерный климатический режим района.

    Основные различия воздушных масс: температура, влажность, характер облачности, запыленность. Например, летом над океанами воздух влажнее, холоднее, чище, чем над сушей на той же широте.

    Чем дольше воздух находится над одной территорией, тем сильнее он подвергается изменениям, поэтому воздушные массы классифицируются по географическим зонам, где они сформировались.

    Выделяют основные типы: 1) арктические (антарктические ), которые перемещаются с полюсов, из зон высокого давления; 2) умеренных широт “полярные” – в север-ном и южном полушариях; 3) тропические – перемещаются из субтропиков и тропиков в умеренные широты; 4) экваториальные – формируются над экватором. В каждом типе выделяют морской и континентальный подтипы, различа-ющиеся прежде всего по температуре и влажности в пределах типа. Воздух, находясь в постоянном движении, переходит из района формирования в соседние и постепенно меняет свойства под влиянием подстилающей поверхности, постепенно переходя в массу другого типа. Этот процесс называется трансформацией.

    Холодными воздушными массами называют такие, которые перемещаются на более теплую поверхность. Они вызывают похолодание в районах, куда приходят.

    Сами они при движении прогреваются от земной поверхности, поэтому внутри масс возникают большие вертикальные градиенты температуры и развивается конвекция с образованием кучевых и кучево-дождевых облаков и выпадением ливневых осадков.

    Воздушные массы, движущиеся на более холодную поверхность, называются теплыми массами. Они приносят потепление, но сами охлаждаются снизу. Конвекция в них не развивается и преобладают слоистые облака.

    Соседние воздушные массы разделены между собой переходными зонами, которые сильно наклонены к поверхности Земли. Эти зоны называют фронтами.