Второй закон менделя генетическая запись. Закономерности наследования, установленные Г. Менделем. Хромосомное определение пола

Биография

Грегор Иоганн Мендель (Gregor Johann Mendel) – выдающийся чешский естествоиспытатель. Он родился в Австрийской империи в простой крестьянской семье. При крещении он получил имя Иоганн.

Изучением природы мальчик увлекался с детства, когда еще работал, сперва помощником садовника, а затем – садовником. Проучившись некоторое время в институте Ольмюца, в философских классах, он в $1843$ году постригся в монахи и принял имя Грегор. Дальше с $1844$ по $1848$ год Грегор Мендель учился в Брюннском богословском институте и стал священником. Во время учебы он самостоятельно изучал многие науки, изучал в Венском университете естественную историю.

Именно в Вене Грегор Мендель увлекся исследованиями процессов гибридизации и статистическими соотношениями гибридов. Мендель уделял особое внимание вопросам изменений качественных признаков у растений. Объектом экспериментов он выбрал горох, который можно было вырастить в монастырском саду. Именно наблюдения за результатами этих исследований и легли в основу знаменитых «законов Менделя».

Воодушевленный первыми успехами, Мендель перенес свои эксперименты на растение семейства астровых (скрещивал разновидности ястребинки) и проводил скрещивания разновидностей пчел. Результаты экспериментов не совпали с результатами опытов с горохом. Тогда еще не знали, что механизм наследования признаков у этих растений и животных отличается от механизма наследования у гороха.

Замечание 1

Грегор Мендель был разочарован в биологической науке. После его назначения настоятелем монастыря, он больше не занимался наукой. Но его заслугой является то, что он впервые выявил и описал статистические закономерности наследования признаков у гибридов. Ознакомимся с ними детальнее.

Первый закон Менделя

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха - с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения , который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков . Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Второй закон Менделя

Проводя дальнейшие эксперименты с гибридами первого поколения, Мендель обнаружил, что при дальнейшем скрещивании гибридов первого поколения между собой гибриды второго поколений отличаются расщеплением признаков с устойчивым постоянством. Сегодня этот закон формулируют таким образом:

Определение 1

«После скрещивания двух гетерозиготных потомков первого поколения между собой, наблюдается расщепление во втором поколении в определенном числовом соотношении: по фенотипу $3:1$, по генотипу $1:2:1$».

Он получил название закона расщепления . Он означает, что рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и потом проявляется во втором гибридном поколении.

Третий закон Менделя

В первых опытах Грегор Мендель принимал во внимание всего одну пару альтернативных признаков. Он заинтересовался вопросом, что если взять во внимание несколько признаков. Признаки начали комбинироваться между собой и поначалу вызвали у ученого замешательство. Но при более детальном рассмотрении, Менделю удалось вывести закономерность расщепления. Оказалось, что гибриды первого поколения однообразны, а во втором поколении признаки по фенотипу расщепляются в пропорции $9:3:3:1$, независимо от другого признака. Этот закон был назван законом независимого наследования . Сегодня его формулировка выглядит так:

Определение 2

«При скрещивании двух особей, которые отличаются друг от друга по нескольким парам (двум или более) альтернативных признаков, гены и соответствующие им признаки наследуются друг от друга независимо и могут комбинироваться во всех возможных сочетаниях (подобно как при моногибридном скрещивании)».

Закономерности, открытые Менделем предвосхитили начало новой науки – генетики.

Генетика - наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность - свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость - свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак - любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип - совокупность всех внешних и внутренних признаков организма.

Ген - функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген - участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип - совокупность генов организма.

Локус - местоположение гена в хромосоме.

Аллельные гены - гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота - организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота - организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой - рецессивным.

Рецессивный ген - аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген - аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод - система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар - дигибридным , нескольких пар - полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак - цвет горошин, альтернативные признаки - желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический - составление и анализ родословных;цитогенетический - изучение хромосом; близнецовый - изучение близнецов; популяционно-статистический метод - изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р - родители; F - потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 - гибриды первого поколения - прямые потомки родителей, F 2 - гибриды второго поколения - возникают в результате скрещивания между собой гибридов F 1); × - значок скрещивания; G - мужская особь; E - женская особь; A - доминантный ген, а - рецессивный ген; АА - гомозигота по доминанте, аа - гомозигота по рецессиву, Аа - гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний - различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика - белая или красная; окраска семядолей - зеленая или желтая; форма семени - морщинистая или гладкая; окраска боба - желтая или зеленая; форма боба - округлая или с перетяжками; расположение цветков или плодов - по всей длине стебля или у его верхушки; высота стебля - длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные - красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый - рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А - желтый цвет горошин, а - зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть - другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть - рецессивный, называютрасщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А - желтый цвет горошин, а - зеленый цвет горошин):

P ♀Aa
желтые
× ♂Aa
желтые
Типы гамет A a A a
F 2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание - скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин - желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую - а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма - гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого - с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа - желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет - половина гамет будет нести ген А , другая половина - ген а . Оплодотворение - процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них - гетерозиготы (несут гены А и а ), 1/4 - гомозиготы по доминантному признаку (несут два гена А ) и 1/4 - гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву - зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян - доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) - рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 - зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие - 9/16, желтые, морщинистые - 3/16, зеленые, гладкие - 3/16, зеленые, морщинистые - 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb - 4/16, AABb - 2/16, AaBB - 2/16, Aabb - 2/16, aaBb - 2/16, ААBB - 1/16,Aabb - 1/16, aaBB - 1/16, aabb - 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов - 3 2 , при тригибридном скрещивании образуется 3 3 - 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А - ген, обусловливающий развитие желтой окраски семян, а - зеленой окраски, В - гладкая форма семени, b - морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а - с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, - над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% - серые длиннокрылые и 41,5% - черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% - черные длиннокрылые и 8,5% - серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 - некроссоверные гаметы; 2 - кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов -АВ и аb , а отцовский - один тип - аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ иааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления - гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование - наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы - гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы - гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты - гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты - гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах - условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 - Механизм цис-фазы (некроссоверные гаметы); 2 - механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом - кариотип.

Генетика пола

Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, - аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, - половые хромосомы. У человека «женскими» половыми хромосомами являются две Х -хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х -хромосом. Пол, у которого образуются гаметы одного типа, несущие Х -хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека - Х -хромосома и Y -хромосома. При образовании гамет половина сперматозоидов получает Х -хромосому, другая половина - Y -хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол - гетерогаметный. Если образуется зигота, несущая две Х -хромосомы, то из нее будет формироваться женский организм, если Х -хромосому и Y -хромосому - мужской.

У животных можно выделить следующие четыре типа хромосомного определения пола .

  1. Женский пол - гомогаметен (ХХ ), мужской - гетерогаметен (ХY ) (млекопитающие, в частности, человек, дрозофила).

    Генетическая схема хромосомного определения пола у человека:

    Р ♀46, XX × ♂46, XY
    Типы гамет 23, X 23, X 23, Y
    F 46, XX
    женские особи, 50%
    46, XY
    мужские особи, 50%

    Генетическая схема хромосомного определения пола у дрозофилы:

    Р ♀8, XX × ♂8, XY
    Типы гамет 4, X 4, X 4, Y
    F 8, XX
    женские особи, 50%
    8, XY
    мужские особи, 50%
  2. Женский пол - гомогаметен (ХХ ), мужской - гетерогаметен (Х0 ) (прямокрылые).

    Генетическая схема хромосомного определения пола у пустынной саранчи:

    Р ♀24, XX × ♂23, X0
    Типы гамет 12, X 12, X 11, 0
    F 24, XX
    женские особи, 50%
    23, X0
    мужские особи, 50%
  3. Женский пол - гетерогаметен (ХY ), мужской - гомогаметен (ХХ ) (птицы, пресмыкающиеся).

    Генетическая схема хромосомного определения пола у голубя:

    Р ♀80, XY × ♂80, XX
    Типы гамет 40, X 40, Y 40, X
    F 80, XY
    женские особи, 50%
    80, XX
    мужские особи, 50%
  4. Женский пол - гетерогаметен (Х0 ), мужской - гомогаметен (ХХ ) (некоторые виды насекомых).

    Генетическая схема хромосомного определения пола у моли:

    Р ♀61, X0 × ♂62, XX
    Типы гамет 31, X 30, Y 31, X
    F 61, X0
    женские особи, 50%
    62, XX
    мужские особи, 50%

Наследование признаков, сцепленных с полом

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х - или Y -хромосомах, называют наследованием, сцепленным с полом .

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание - два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец - рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец - доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а среди самцов - половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х -хромосоме (Х А - красный цвет глаз, Х а - белый цвет глаз), а Y -хромосома таких генов не содержит.

Схема половых хромосом человека и сцепленных с ними генов:
1 - Х-хромосома; 2 - Y-хромосома.

У людей мужчина получает Х -хромосому от матери, Y -хромосому - от отца. Женщина получает одну Х -хромосому от матери, другую Х -хромосому от отца. Х -хромосома - средняя субметацентрическая, Y -хромосома - мелкая акроцентрическая; Х -хромосома и Y -хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х -хромосомы (с генами, имеющимися только в Х -хромосоме); 2) гомологичный участок Х -хромосомы и Y -хромосомы (с генами, имеющимися как в Х -хромосоме, так и в Y -хромосоме); 3) негомологичный участок Y -хромосомы (с генами, имеющимися только в Y -хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследования Локализация генов Примеры
Х -сцепленный рецессивный Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х -сцепленный доминантный Негомологичный участок Х -хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y -сцепленный (частично сцепленный с полом) Гомологичный участок Х - и Y -хромосом Синдром Альпорта, общая цветовая слепота
Y -сцепленный Негомологичный участок Y -хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

Большинство генов, сцепленных с Х -хромосомой, отсутствуют в Y -хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х -хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если Х А X A Y

F 2 X A X A X А X a
♀ норм. сверт. крови
50%
X А Y
♂ норм. сверт. крови
25%
X a Y
♂ гемофилики
25%

В предыдущей статье мы познакомились с фундаментальными понятиями и методами генетики. Настало время их применить при изучении нового раздела - Менделевской генетики, основанной на законах, открытых Грегором Менделем.

Мендель следовал некоторым принципам в своих исследованиях, которые привели его работы к успеху:

.

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным - в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным - если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)

В схеме решения генетическое задачи есть некоторые обозначения: ♀ - женский организм, ♂ - мужской организм, P - родительские организмы, F 1 - гибриды первого поколения, F 2 - гибриды второго поколения. Вероятно, имеет смысл сохранить картинку ниже себе на гаджет, если вы только приступаете к изучению генетики;)


Спешу сообщить вам, что браки между людьми (в отличие от насильственного скрещивания гороха) происходят только по любви и взаимному согласию! Поэтому в задачах, где речь идет о людях, не следует ставить знак скрещивания "×" между родительскими особями. В таком случае ставьте знак "→" - "стрелу Амура", чтобы привести в восхищение экзаменатора:)

Первый закон Менделя - закон единообразия

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.


Этот закон основан на варианте взаимодействия между генами - полном доминировании. При таком варианте один ген - доминантный, полностью подавляет другой ген - рецессивный. В эксперименте, который мы только что изучили, Мендель скрещивал чистые линии гороха с желтыми (АА) и зелеными (aa) семенами, в результате все потомство имело желтый цвет семян (Aa) - было единообразно.

Часто генотип особи не изучен и представляет загадку. Как быть генетику в данном случае? Иногда проще всего применить анализирующее скрещивание - скрещивание гибридной особи (у которой не известен генотип) с гомозиготой по рецессивному признаку.

Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.


В рассмотренном случае, если генотип изучаемой особи содержит два доминантных гена (AA) - то в потомстве не может проявиться рецессивного признака, так как все потомство будет единообразно (Aa). Если изучаемая особь содержит рецессивный ген (Aа), то половина потомства будет его иметь (aa). В результате становится известен генотип гибридной особи.

Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют друг друга - проявляется промежуточный признак.


Обратите внимание, потомство F 1 получилось также единообразным (возможен только один вариант - Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA - красный, aa - белый, Aa - розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета - получается розовый.

Второй закон Менделя - закон расщепления

"При скрещивании гетерозиготных гибридов (Aa) первого поколения F 1 во втором поколении F 2 наблюдается расщепление по данному признаку: по генотипу 1: 2: 1, по фенотипу 3: 1"


Скрещивая между собой гибриды первого поколения (Aa) Мендель обнаружил, что в потомстве особей с доминантным признаком (AA, Aa - желтый цвет семян) примерно в 3 раза больше, чем особей с рецессивным (aa).

Искренне желаю того, чтобы вы научились сами определять расщепление по генотипу и фенотипу. Это сделать не сложно: когда речь идет о генотипе, обращайте внимание только на гены (буквы), то есть если перед вами особи AA, Aa, Aa, aa - следует брать генотипы по очереди и складывать количество одинаковых генотипов. Именно в результате таких действий соотношение по генотипу получается 1:2:1.

Если перед вами стоит задача посчитать соотношение по фенотипу, то вообще не смотрите на гены - это только запутает! Следует учитывать лишь проявление признака. В потомстве получилось 3 растения с желтым цветом семян и 1 с зеленым, следовательно, расщепление по фенотипу 3:1.

Третий закон Менделя - закон независимого наследования

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb:) Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.


Запомните III закон Менделя так: "При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь - это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.


Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой - женские. Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.

В результате скрещивания дигетерозигот среди 16 потомков получается 4 возможных фенотипа:

  • Желтые гладкие - 9
  • Желтые морщинистые - 3
  • Зеленые гладкие - 3
  • Зеленые морщинистые - 1

Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?


Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака - микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.

В данной задаче только ¼ потомства (25%) будет иметь нормальные глазные яблоки. ½ часть потомства (50%) будет иметь глазное яблоко малых размеров - микрофтальмию, и оставшаяся ¼ (25%) будут слепыми с почти полным отсутствием глазных яблок (анофтальмией).

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот - 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о "наибольшей вероятности", в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.

Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.

Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе " Гены... расположены в разных парах гомологичных хромосом". Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте, что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом). Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном состоянии: AA, Aa - болен.


В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?


Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.

Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: "голубоглазый мальчик с нормальным зрением" с генотипом aadd. Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена a - от матери, и гена d - от отца. Следовательно, отец и мать гетерозиготны.


Теперь мы можем точно сказать, что вероятность рождения в этой семье нормального кареглазого ребенка составляет ¼ или 25%, его генотип - Ddaa.

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

Аутосомно-доминантный тип наследования можно узнать по следующим признакам:

  • Болезнь проявляется в каждом поколении семьи (передача по вертикали)
  • Здоровые дети больных родителей имеют здоровых детей
  • Мальчики и девочки болеют одинаково часто
  • Соотношение больных и здоровых 1:1


©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Законы Менделя - принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

Энциклопедичный YouTube

    1 / 5

    ✪ Первый и второй законы Менделя. Естествознание 3.2

    ✪ Третий закон Менделя. Естествознание 3.3

    ✪ Урок биологии №20. Грегор Мендель и его Первый закон.

    ✪ Первый и второй законы Менделя супердоходчиво

    ✪ 1 закон Менделя. Закон доминирования.Подготовка к ЕГЭ и ОГЭ по биологии

    Субтитры

Предшественники Менделя

В начале XIX века Дж. Госс (John Goss ), экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении (все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но на нём легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей .

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Понятие гомозиготности было введено позднее У. Бэтсоном в 1902 году .

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Скрещиванием организмов двух чистых линий , различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет - в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иогансеном).
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный

Условия выполнения закона независимого наследования

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет

  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

В 19 веке австрийский ботаник и биолог Грегор Иоганн Мендель проводил исследования посевного гороха. Он смог установить, как передаются признаки по наследству. Это исследование выявило три закономерности, которые получили название «Законы Менделя».

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.

    Закон единообразия

    Закон расщепления

    Закон независимого наследования признаков

    Заключение

Закон единообразия

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями - разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результат

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

Закон расщепления

Порядок проведения эксперимента

Для следующего этапа исследования использовался только горох первого поколения. Менгель высадил его и оставил без вмешательства, чтобы горох мог самостоятельно опылиться. Это позволило появиться растениям второго поколения «F2».

Результат

Из-за самостоятельного опыления появились семена желтого и зелёного цвета. А поскольку жёлтый цвет является доминантным признаком, то соотношение семян желтого цвета к зеленому составило 3 к 1.

Разделение, а точнее расщепление родительского типа на два различных, дало название второму закону.

Данный опыт помог установить, что признак одного из родителей (зеленый цвет) не исчез полностью, а просто неактивен или подавлен. За него отвечал тот же ген, что и за желтый цвет, за который отвечала часть гена - доминантный аллель. Желтый цвет в себе содержала рецессивная аллель - «а», подавляемая доминантной «А».

Поэтому строение растений:

    зеленый горох-родитель - две рецессивных аллели «аа»;

    желтый горох-родитель - две доминантных аллели «АА»;

    желтый горох первого поколения - одна доминантная и одна рецессивная аллели «Аа»;

    желтый горох второго поколения - он может содержать следующие аллели: «АА», «Аа», «аА». В них цвет обуславливается наличием доминанта;

    зеленый горох второго поколения - две рецессивных аллели «аа».

Третий закон независимого наследования признаков

Порядок проведения эксперимента

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй - зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

    желтый цвет и гладкие семена;

    желтый цвет и ребристые семена;

    зеленый цвет и гладкие семена;

    зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

Таким образом строение растений:

    зеленый горох-родитель с ребристыми семенами - «аа» и «bb»;

    желтый горох-родитель с гладкими семенами - «АА» и «BB»;

    желтый горох первого поколения с гладкими семенами - «Аа» и «Bb»;

    желтый горох второго поколения с гладкими семенами - «АА», «Аа», «аА» в сочетании с «BB», «Bb», «bB».

    желтый горох второго поколения с ребристыми семенами - «АА», «Аа», «аА» и «bb»

    зеленый горох второго поколения с гладкими семенами - «аа» в сочетании с «BB», «Bb», «bB»;

    зеленый горох второго поколения с ребристыми семенами «аа» и «bb».

Таким образом соотношение цветов и гладкости: 9-3-3-1.

Заключение

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.