Как вычисляют расстояние до звезд. Как измерить расстояние до звёзд? Фотометрический метод определения расстояний

Расстояния до удаленных небесных объектов, например, звезд, недоступны для прямого измерения. Их вычисляют, опираясь на измеряемые параметры этих объектов, такие как блеск звезды или периодическое изменение ее координат. В настоящее время разработано несколько методов вычисления звездных расстояний, и каждый из них имеет свои границы применимости. Рассмотрим подробнее, как ученые определяют расстояние до звезд.

Использование параллакса

Параллаксом называют смещение наблюдаемого объекта относительно удаленного фона при изменении положения наблюдателя. Зная расстояние между точками наблюдения (базис параллакса) и величину углового смещения объекта, несложно рассчитать расстояние до него. Чем меньше величина смещения, тем дальше находится объект. Межзвездные расстояния огромны, и, чтобы увеличить угол, используют максимально большой базис - для этого измеряют положение звезды в противоположных точках земной орбиты. Этот метод называется звездным годичным параллаксом.

Теперь легко понять, как до звезд методом годичного параллакса. Оно вычисляется как одна из сторон треугольника, образованного наблюдателем, Солнцем и удаленной звездой, и равно r = a/sin p, где: r - расстояние до звезды, а - расстояние от Земли до Солнца и p - годичный параллакс звезды. Поскольку параллаксы всех звезд меньше 1 угловой секунды (1’’), синус малого угла можно заменить величиной самого угла в радианной мере: sin p ≈ p’’/206265. Тогда получаем: r = a∙206265/p’’, или, в астрономических единицах, r = 206265/p’’.

Единицы межзвездных расстояний

Понятно, что полученная формула неудобна, как и выражение колоссальных расстояний в километрах или астрономических единицах. Поэтому в качестве общепринятой единицы в звездной астрономии принят парсек («параллакс-секунда»; сокращенно - пк). Это расстояние до звезды, годичный параллакс которой равен 1 секунде. В этом случае формула принимает простой и удобный вид: r = 1/p пк.

Один парсек равен 206265 астрономических единиц или приблизительно 30,8 триллионов километров. В популярной литературе и статьях часто используется такая единица, как световой год - расстояние, которое за год проходят в вакууме электромагнитные волны, не испытывая влияния гравитационных полей. Один световой год равен около 9,5 триллиона километров, или 0,3 парсека. Соответственно, один парсек составляет приблизительно 3,26 светового года.

Точность параллактического метода

Точность измерения параллакса в наземных условиях в настоящее время позволяет определение расстояний до звезд не более 200 парсек. Дальнейшее повышение точности достигается путем наблюдений с использованием космических телескопов.

Так, европейский спутник «Гиппарх» (HIPPARCOS, был запущен в 1989 году) позволил, во-первых, увеличить это расстояние до 1000 пк, а во-вторых, существенно уточнить уже известные звездные расстояния. Европейский же спутник «Гайя», или «Гея» (Gaia, запущен в 2013 году), повысил точность измерений еще в на два порядка. С помощью данных «Гайя» астрономы как определяют расстояние до звезд в радиусе 40 килопарсек, так и надеются открыть новые экзопланеты. Космический телескоп им. Хаббла достигает сопоставимой с «Гайя» точности. Вероятно, она близка к предельной для оптических измерений.

Несмотря на это ограничение, тригонометрический годичный параллакс служит калибровочной основой для других методов определения расстояний до звезд.

Фотометрия. Понятие звездной величины

Фотометрия в астрономии занимается измерением интенсивности испускаемого небесным объектом электромагнитного излучения, в том числе и в оптическом диапазоне. На основе фотометрических параметров различными методами определяют расстояние как до звезд, так и до иных удаленных объектов, например, галактик. Одним из основных понятий, используемых в фотометрических методах, является звездная величина, или блеск (обозначается индексом m).

Видимая, или относительная (для оптического диапазона - визуальная) звездная величина измеряется непосредственно по яркости звезды и имеет шкалу, в которой возрастание величины характеризует падение яркости (так сложилось исторически). Например, Солнце имеет видимую звездную величину -26,7 m , Сириус имеет величину -1,46 m , а ближайшая к Солнцу звезда Проксима Центавра - величину +11,05 m .

Абсолютная звездная величина - вычисляемый параметр. Он соответствует видимой звезды, если бы эта звезда находилась на расстоянии 10 пк. Этот параметр связывает блеск объекта с расстоянием до него. У приведенных в качестве примера звезд абсолютная величина составляет: у Солнца +4,8 m , у Сириуса +1,4 m , у Проксимы +15,5 m . Расстояние этих звезд соответственно 0,000005, 2,64 и 1,30 парсека. Они различаются по очень важному астрофизическому параметру - светимости.

Спектры и светимость звезд

Астрономы называют светимостью L полную энергию, излучаемую звездой (либо другим объектом) в единицу времени, то есть мощность звезды. Светимость может быть выражена через абсолютную звездную величину, однако, в отличие от нее, не зависит от расстояния.

По спектру излучения, отражающему в первую очередь температуру (от нее зависит цвет), звезды подразделяются на несколько спектральных классов. Звезды одного спектрального класса характеризуются, как правило, одинаковой светимостью (здесь есть исключения, но они выявляются по особенностям спектра). Зависимость «спектр - светимость» (или «цвет - звездная величина») отображена на так называемой Диаграмме Герцшпрунга - Рассела.

Эта диаграмма дает возможность по спектральным классам звезд оценивать их абсолютные величины. А поскольку абсолютная величина связана несложным соотношением с расстоянием и с видимой, наблюдаемой величиной, далее нам уже ясно, как определяют расстояние до звезд. Формула имеет следующий вид: lg r = 0,2(m - M)+1. Здесь r - расстояние, m - видимая звездная величина и M - абсолютная величина. Точность такого метода невелика, но позволяет сделать оценку расстояния.

Стандартные свечи в астрономии

Существуют звезды, светимость которых характеризуется однозначным соответствием определенному физическому параметру. Благодаря этому астрономы с хорошей точностью по закону обратных квадратов определяют расстояние до звезд как функцию падения блеска. Чем меньше видимая величина такой звезды, тем дальше расположена сама звезда. К подобным объектам относятся, например, цефеиды и сверхновые типа Ia.

Цефеиды - переменные которых строго связана с периодом пульсаций. Измерив блеск и период такой звезды, легко вычислить расстояние до нее. Цефеиды - очень яркие звезды. Современные телескопы способны разрешать цефеиды в других галактиках и таким образом установить расстояние до галактики.

Сверхновые типа Ia представляют собой взрывы определенного типа звезд в тесных двойных системах. Взрыв происходит при достижении звездой некоторого критического значения массы и всегда имеет одинаковую светимость и характер спада блеска, что также позволяет вычислить расстояние. Яркость сверхновых бывает сопоставима с яркостью целой галактики, поэтому с их помощью астрономы могут оценивать расстояния на очень больших, космологических масштабах - порядка миллиардов парсек.

Дальше всех

О самой близкой к нам звезде - Проксиме Центавра - знают многие. А вот какая из известных ныне звезд расположена дальше всех?

Принадлежащая к нашей Галактике, обнаружена не так давно. Она находится за пределами спирального диска Млечного Пути, на внешней границе галактического гало, на расстоянии около 122 700 пк, или 400 000 световых лет, в созвездии Весов. Это красный гигант 18-звездной величины. Конечно, известны и более далекие звезды, однако трудно установить точно их принадлежность к нашей Галактике.

Ну, а какая звезда из всех известных во Вселенной наиболее удалена от нас? Она имеет романтическое имя MACS J1149+2223 Lensed Star-1, или просто LS1, и расположена в 9 миллиардах световых лет. Ее обнаружение - это астрономическая удача, поскольку увидеть звезду на таком расстоянии оказалось возможно лишь благодаря событию гравитационного микролинзирования в далекой галактике, в свою очередь линзируемой более близким При этом использовался иной метод вычисления расстояния - по космологическому красному смещению. Этим способом определяют расстояния до самых удаленных объектов Вселенной, которые невозможно разрешить на отдельные звезды. И LS1 - один из самых удивительных и красивых примеров того, как определяют расстояния до звезд астрономы.

Лекция №8. Методы определения расстояний до космических объектов *

    Суточный параллакс.

    Определение расстояний до планет.

    Определение расстояний до ближайших звезд.

    Фотометрический метод определения расстояний.

    Определение внегалактических расстояний.

    Определение расстояний по красному смещению

    Единицы расстояний в астрономии.

В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а.е.), величина которой по радиолокационным измерениям известна со среднеквадратичной погрешностью 0,9 км и равна (149597867,9 0,9) км. С учетом различных измерений а.е. Международный астрономический союз принял в 1976 г. значение 1 а.е. =149597870 2 км.

  1. Суточный параллакс

Координаты небесных тел, определенные из наблюдений на поверхности Зем­ли, называются топоцентрическими. Топоцентрические координаты одного и того же светила в один и тот же момент, вообще говоря, различны для, различных точек поверхности Земли. Различие это заметно лишь для тел Солнечной системы и практически не ощутимо для звезд (меньше 0,00004"). Из множества направлений, по которым светило видно из разных точек Земли, основным считается направление из центра Земли. Оно дает геоцентрическое положение светила и определяет его геоцентрические координаты.

Угол между направлениями, по которым светило М было бы видно из центра Земли и из какой-нибудь точки на ее поверхности, называется суточным параллаксом светила.

Рис. 1. Суточный параллакс

Иными словами, суточный параллакс есть угол р", под которым со светила был бы виден радиус Земли, проведенный в точку наблюдения (рис. 1).

Для светила, находящегося в момент наблюдения в зените, суточный параллакс равен нулю. Если свети­ло М наблюдается на горизонте, то суточный параллакс его принимает максимальное значение и называется го­ризонтальным параллаксом р.

Из соотношения между сторонами и углами тре­угольников ТОМ" и ТОМ (рис.1) имеем

R / Δ = sin p / / sin z / и R / Δ = sin p (1)

Отсюда получаем

sin p / =sin p sin z / . (2)

Горизонтальный параллакс у всех тел Солнечной системы - величина неболь­шая (у Луны в среднем р - 57", у Солнца р = 8,79", у планет меньше 1").

Поэтому синусы углов р и р" в последней формуле можно заменить самими углами и написать

p " = p sin z ". (3)

Вследствие суточного параллакса светило кажется нам ниже над горизонтом, чем это было бы, если бы наблюдение проводилось из центра Земли; при этом влияние параллакса на высоту светила пропорционально синусу зенитного расстояния, а максимальное его значение равно горизонтальному параллаксу р.

Так как Земля имеет форму сфероида, то во избежание разногласий в опре­делении горизонтальных параллаксов необходимо вычислять их значения для определенного радиуса Земли. За такой радиус принят экваториальный радиус Земли Ro = 6 378 км, а горизонтальные параллаксы, вычисленные для него, назы­ваются горизонтальными экваториальными параллаксами р о . Именно эти параллаксы тел Солнечной системы приводятся во всех справочных пособиях.

  1. Определение расстояний до планет.

Другой метод определения связан с использованием третьего (уточненного) закона Кеплера. В этом случае среднее расстояние r планеты от Солнца (в долях а.е.) находят по периоду ее обращения T:

где r выражено в а.е., а T - в земных годах. Массой планеты по сравнению с массой Солнца можно пренебречь. Формула (4) следует из 3-го закона Кеплера. Расстояния до Луны и планет с высокой точностью определены методами радиолокации.

Звезды являются самым распространенным типом небесных тел во Вселенной. Звезд до 6-й звездной величины насчитывается около 6000, до 11-й звездной величины примерно миллион, а до 21-й звездной величины их на всем небе около 2 млрд.

Все они, как и Солнце, являются горячими самосветящимися газовыми шарами, в недрах которых выделяется огромная энергия. Однако звезды даже в самые сильные телескопы видны как светящиеся точки, так как они находятся очень далеко от нас.

1. Годичный параллакс и расстояния до звезд

Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно обращается вокруг Солнца, то видимые положения звезд на небе должны меняться. За полгода Земля перемещается на величину диаметра своей орбиты. Направления на звезду с противоположных точек этой орбиты должны различаться. Иначе говоря, у звезд должен быть заметен годичный параллакс (рис. 72).

Годичным параллаксом звезды ρ называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), если она перпендикулярна лучу зрения.

Чем больше расстояние D до звезды, тем меньше ее параллакс. Параллактическое смещение положения звезды на небе в течение года происходит по маленькому эллипсу или кругу, если звезда находится в полюсе эклиптики (см. рис. 72).

Коперник пытался, но не смог обнаружить параллакс звезд. Он правильно утверждал, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было заметить их параллактическое смещение.

Впервые надежное измерение годичного параллакса звезды Веги удалось осуществить в 1837 г. русскому академику В. Я. Струве. Почти одновременно с ним в других странах определили параллаксы еще у двух звезд, одной из которых была α Центавра. Эта звезда, которая в СССР не видна, оказалась ближайшей к нам, ее годичный параллакс ρ= 0,75". Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Неудивительно, что так долго не могли заметить у звезд столь малые угловые смещения.

Расстояние до звезды где а - большая полуось земной орбиты. При малых углах если р выражено в секундах дуги. Тогда, приняв а = 1 а. е., получим:


Расстояние до ближайшей звезды α Центавра D=206 265" : 0,75" = 270 000 а. е. Свет проходит это расстояние за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны около 1 с.

Расстояние, которое свет проходит в течение года, называется световым годом . Эта единица используется для измерения расстояния наряду с парсеком (пк).

Парсек - расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1".

Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. Например, расстояние до звезды α Центавра равно 0,75" (3/4"), или 4/3 пк.

1 парсек = 3,26 светового года = 206 265 а. е. = 3*10 13 км.

В настоящее время измерение годичного параллакса является основным способом при определении расстояний до звезд. Параллаксы измерены уже для очень многих звезд.

Измерением годичного параллакса можно надежно установить расстояние до звезд, находящихся не далее 100 пк, или 300 световых лет.

Почему не удается точно измерить годичный параллакс более o далеких звезд?

Расстояние до более далеких звезд в настоящее время определяют другими методами (см. §25.1).

2. Видимая и абсолютная звездная величина

Светимость звезд. После того как астрономы получили возможность определять расстояния до звезд, было установлено, что звезды отличаются по видимой яркости не только из-за различия расстояния до них, но и вследствие различия их светимости .

Светимостью звезды L называется мощность излучения световой энергии по сравнению с мощностью излучения света Солнцем.

Если две звезды имеют одинаковую светимость, то звезда, которая находится дальше от нас, имеет меньшую видимую яркость. Сравнивать звезды по светимости можно лишь в том случае, если рассчитать их видимую яркость (звездную величину) для одного и того же стандартного расстояния. Таким расстоянием в астрономии принято считать 10 пк.

Видимая звездная величина, которую имела бы звезда, если бы находилась от нас на стандартном расстоянии D 0 =10 пк, получила название абсолютной звездной величины М.

Рассмотрим количественное соотношение видимой и абсолютной звездных величин звезды при известном расстоянии D до нее (или ее параллаксе р). Вспомним сначала, что разность в 5 звездных величин соответствует различию яркости ровно в 100 раз. Следовательно, разность видимых звездных величин двух источников равна единице, когда один из них ярче другого ровно в раз (эта величина примерно равна 2,512). Чем ярче источник, тем его видимая звездная величина считается меньшей. В общем случае отношение видимой яркости двух любых звезд I 1:I 2 связано с разностью их видимых звездных величин m 1 и m 2 простым соотношением:


Пусть m - видимая звездная величина звезды, находящейся на расстоянии D. Если бы она наблюдалась с расстояния D 0 = 10 пк, ее видимая звездная величина m 0 по определению была бы равна абсолютной звездной величине М. Тогда ее кажущаяся яркость изменилась бы в

В то же время известно, что кажущаяся яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

(2)

Следовательно,

(3)

Логарифмируя это выражение, находим:

(4)

где р выражено в секундах дуги.

Эти формулы дают абсолютную звездную величину М по известной видимой звездной величине m при реальном расстоянии до звезды D. Наше Солнце с расстояния 10 пк выглядело бы примерно как звезда 5-й видимой звездной величины, т. е. для Солнца М ≈5.

Зная абсолютную звездную величину М какой-нибудь звезды, легко вычислить ее светимость L. Принимая светимость Солнца L =1, по определению светимости можно записать, что

Величины М и L в разных единицах выражают мощность излучения звезды.

Исследование звезд показывает, что по светимости они могут отличаться в десятки миллиардов раз. В звездных величинах это различие достигает 26 единиц.

Абсолютные величины звезд очень высокой светимости отрицательны и достигают М =-9. Такие звезды называются гигантами и сверхгигантами. Излучение звезды S Золотой Рыбы мощнее излучения нашего Солнца в 500 000 раз, ее светимость L=500 000, наименьшую мощность излучения имеют карлики с М=+17 (L=0,000013).

Чтобы понять причины значительных различий в светимости звезд, необходимо рассмотреть и другие их характеристики, которые можно определить на основе анализа излучения.

3. Цвет, спектры и температура звезд

Во время наблюдений вы обратили внимание на то, что звезды имеют различный цвет, хорошо заметный у наиболее ярких из них. Цвет нагреваемого тела, в том числе и звезды, зависит от его температуры. Это дает возможность определить температуру звезд по распределению энергии в их непрерывном спектре.

Цвет и спектр звезд связаны с их температурой. В сравнительно холодных звездах преобладает излучение в красной области спектра, отчего они и имеют красноватый цвет. Температура красных звезд низкая. Она растет последовательно при переходе от красных звезд к оранжевым, затем к желтым, желтоватым, белым и голубоватым. Спектры звезд крайне разнообразны. Они разделены на классы, обозначаемые латинскими буквами и цифрами (см. задний форзац). В спектрах холодных красных звезд класса М с температурой около 3000 К видны полосы поглощения простейших двухатомных молекул, чаще всего оксида титана. В спектрах других красных звезд преобладают оксиды углерода или циркония. Красные звезды первой величины класса М - Антарес , Бетельгейзе .

В спектрах желтых звезд класса G , к которым относится и Солнце (с температурой 6000 К на поверхности), преобладают тонкие линии металлов: железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.

В спектрах белых звезд класса А , как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000 К.

В спектрах наиболее горячих, голубоватых звезд с температурой около 30 000 К видны линии нейтрального и ионизованного гелия.

Температуры большинства звезд заключены в пределах от 3000 до 30 000 К. У немногих звезд встречается температура около 100 000 К.

Таким образом, спектры звезд очень сильно отличаются друг от друга и по ним можно определить химический состав и температуру атмосфер звезд. Изучение спектров показало, что в атмосферах всех звезд преобладающими являются водород и гелий.

Различия звездных спектров объясняются не столько разнообразием их химического состава, сколько различием температуры и других физических условий в звездных атмосферах. При высокой температуре происходит разрушение молекул на атомы. При еще более высокой температуре разрушаются менее прочные атомы, они превращаются в ионы, теряя электроны. Ионизованные атомы многих химических элементов, как и нейтральные атомы, излучают и поглощают энергию определенных длин волн. Путем сравнения интенсивности линий поглощения атомов и ионов одного и того же химического элемента теоретически определяют их относительное количество. Оно является функцией температуры. Так, по темным линиям спектров звезд можно определить температуру их атмосфер.

У звезд одинаковой температуры и цвета, но разной светимости спектры в общем одинаковы, однако можно заметить различия в относительных интенсивностях некоторых линий. Это происходит от того, что при одинаковой температуре давление в их атмосферах различно. Например, в атмосферах звезд-гигантов давление меньше, они разреженнее. Если выразить эту зависимость графически, то по интенсивности линий можно найти абсолютную величину звезды, а далее по формуле (4) определить расстояние до нее.

Пример решения задачи

Задача. Какова светимость звезды ζ Скорпиона, если ее видимая звездная величина 3, а расстояние до нее 7500св. лет?


Упражнение 20

1. Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

2. Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин?

3. Параллакс Веги 0,11". Сколько времени свет от нее идет до Земли?

4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе?

5. Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий видимую звездную величину -1,6? Чему равны абсолютные величины этих звезд, если расстояние до обеих составляет 3 пк?

6. Назовите цвет каждой из звезд приложения IV по их спектральному классу.

Чтобы изучать строение Вселенной и природу небесных тел, астроном должен уметь прежде всего определять расстояния до интересующих его космических объектов. Как же измеряются расстояния до Луны и планет, Солнца и звезд?

Все эти расстояния в конечном счете зиждятся на значении среднего расстояния Земли от Солнца - так называемой астрономической единице, а она непосредственно зависит от точности измерения размеров самой Земли.

При наблюдении Солнца из удаленных точек земной поверхности наше дневное светило претерпевает параллактическое смещение. Оно будет наибольшим, если два наблюдателя расположатся в диаметрально противоположных точках земного шара. Измерения показали, что угол этого смещения очень мал - около 18 секунд дуги, то есть под таким углом с Солнца должна быть видна наша Земля.

Из тригонометрии известно, что предмет бывает виден под углом, равным одной секунде дуги, если он удален от наблюдателя на расстояние, в 206 265 раз превышающее его линейные размеры или его диаметр. Следовательно, расстояние Земля-Солнце примерно в 11 500 раз больше диаметра Земли. Однако из-за большой яркости Солнца и нагревания инструмента (ведь труба телескопа наводится на дневное светило!) такие измерения приводят к потере точности. Поэтому французские астрономы Джан Доменико Кассини и Жан Рише (около 1640-1696) решили определить расстояние до Солнца путем измерения параллакса Марса - углового смещения планеты на фоне далеких звезд - во время его великого противостояния в 1672 году. Кассини измерял положение планеты из Парижа, а Рише - из Кайенны, города Французской Гвианы в Южной Америке.

С открытием третьего закона Кеплера относительные расстояния планет в Солнечной системе, выраженные в долях среднего расстояния Земля-Солнце, были хорошо известны. Но чтобы получить масштаб планетной системы и определить абсолютное значение астрономической единицы, достаточно было измерить расстояние между двумя любыми планетами. Измерять же положение планет относительно звезд можно гораздо точнее, чем положение яркого Солнца на дневном небе. Этим и воспользовались впервые Кассини и Рише.

Математическая обработка наблюдений, выполненная Кассини в 1673 году, дала значение параллакса Солнца 9,5 секунды дуги. Здесь под параллаксом следует понимать угол, под которым со светила виден экваториальный радиус Земли . Отсюда получалось, что среднее расстояние Земли от Солнца (1 а. е.) равно 138,5 млн км (в современных мерах длины), что на 11,1 млн км меньше действительного значения. Но по тем временам даже такой результат считался большим научным достижением.

Английский астроном Эдмонд Галлей (1656-1742) предложил метод определения расстояния от Земли до Солнца путем наблюдения прохождений Венеры по солнечному диску. Ближайшее такое прохождение должно было состояться в 1761 году, и во все концы света были снаряжены астрономические экспедиции...

Большая неудача постигла тогда французскую экспедицию Лежантиля:
"...война англичан в Индии мешает ему поспеть вовремя, он приезжает туда уже после прохождения. Преданный астрономии, он решается на геройский поступок: остается на восемь лет в Пондишери, чтобы дождаться следующего прохождения в 1769 году...
Приходит давно ожидаемый год; весь май и первые дни июня погода стоит великолепная... Наступает день прохождения: небо покрывается тучами, затемняющими Солнце, Венера проходит, а через несколько минут после этого небо снова проясняется. Солнце блестит с прежнею силою, и во все последующие дни ни одного облачка!..
Не решаясь оставаться здесь до следующего прохождения (1874), бедный астроном возвращается во Францию, дважды терпит кораблекрушение и прибывает наконец в Париж. Здесь он узнает, что, за отсутствием каких-либо известий о нем, все сочли его умершим, а место его в Академии наук уже замещено другим; все решено бесповоротно, он лишен даже собственного имущества, так как суд считал его умершим. Все это так подействовало на несчастного астронома, что он вскоре умер"
(Фламмарион Камилл. Популярная астрономия. СПб., 1913. С. 247.).

Результаты наблюдений этих прохождений, полученные другими наблюдателями, не заслуживали должного доверия, так как оценки параллакса Солнца, взятые из первого прохождения, колебались между 8 и 10 секундами дуги; оценки из наблюдений 1769 года были заключены между 8 и 9 секундами дуги, что соответствует разнице в расстоянии до Солнца более 18 млн км. Зато прохождения 1874 и 1882 годов дали уже обнадеживающие результаты: параллакс был заключен между 8,79 и 8,86 секунды дуги. Вычисленные по этим параллаксам расстояния равны соответственно 149 млн 669 тыс. и 148 млн 486 тыс. км (больше параллакс - меньше расстояние, и наоборот).

Разрабатывались и другие способы определения длины астрономической единицы. В частности, астрономы Пулковской обсерватории в 1842-1880 годах выполнили точные измерения смещений видимых положений звезд, происходящих по причине движения Земли вокруг Солнца и конечной скорости света (так называемые аберрационные смещения), и нашли, что параллакс Солнца равен 8,793 секунды дуги; астрономическая единица равна 149,6 млн км, что совпадает с современными измерениями. Но Парижская международная конференция астрономов в 1896 году приняла округленные значения: параллакс равен 8,80 секунды дуги, астрономическая единица равна 149,5 млн км. Этими значениями астрономы пользовались вплоть до 1970 года.

В январе 1931 года малая планета Эрос проходила от Земли на расстоянии всего лишь 0,17 а. е. В наблюдениях (главным образом фотографических) приняли участие 24 астрономические обсерватории, в том числе Пулковская. Из наблюдений Эроса была найдена величина параллакса Солнца 8,790 секунды дуги. Вычисленное по новому параллаксу среднее расстояние Земли от центрального светила составляло 149 млн 669 тыс. км.

В 60-х годах XX века астрономы для измерения расстояний до небесных тел Солнечной системы стали применять более точный - радиолокационный метод. Сущность этого метода состоит в том, что в сторону небесного тела посылают мощный кратковременный импульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн в космическом пространстве равна скорости света - 299 792,458 км/с. Поэтому, если точно измерить время, которое необходимо сигналу, чтобы достичь небесного тела и после отражения от его поверхности возвратиться обратно, нетрудно вычислить искомое расстояние.

Так были уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера. Из радиолокационных наблюдений Венеры, проведенных в СССР, США и Англии, было определено значение астрономической единицы: 1 а. е. = 149 597 870 км, с возможной ошибкой около 1 км. Такой точности более чем достаточно для нужд астрономии и космонавтики. В практических целях пользуются округленным значением астрономической единицы - 149 млн 600 тыс. км, которому соответствует параллакс Солнца - 8,794 секунды дуги.

Метод параллакса пригоден и для определения расстояний до ближайших звезд. Только в качестве базиса используется не радиус Земли, а средний радиус земной орбиты. Если большая полуось земной орбиты, расположенная перпендикулярно направлению на звезду, видна с нее под углом к, то расстояние до звезды вычисляется по формуле:

r=206265/π

где π выражено в секундах дуги.

Из формулы видно, что параллаксу в одну секунду дуги (π = 1) соответствует расстояние, равное 206 265 а. е. Оно называется парсеком (от слов "параллакс" и "секунда") и сокращенно обозначается ПК.

Парсек - единица расстояния, которая широко используется в звездной астрономии, так как астрономическая единица слишком мала для измерения расстояний до звезд. Расстояние в парсеках вычисляется по очень простой формуле:

где π - параллакс звезды в секундах дуги.

Самая близкая к нам звезда альфа Центавра имеет параллакс - 0,76 секунды дуги. Стало быть, расстояние до нее - 1,32 пк.

Расстояния до звезд измеряют еще в световых годах .

Световой год - это такое расстояние, которое свет проходит за один тропический год. В тропическом году около 3,16*10 7 секунд. Умножая это число на скорость света, получим: 1 световой год = 9,46*10 12 км = 63 239,7 а. е.

1 парсек (пк) = 30,86 * 10 12 км = 3,26 светового года

Что бы ни говорили физики о трехмерности, шестимерности или даже одиннадцатимерности пространства, для астронома наблюдаемая Вселенная всегда двумерна. Происходящее в Космосе видится нам в проекции на небесную сферу, подобно тому, как в кино на плоский экран проецируется вся сложность жизни. На экране мы легко отличаем далекое от близкого благодаря знакомству с объемным оригиналом, но в двумерной россыпи звезд нет наглядной подсказки, позволяющей обратить ее в трехмерную карту, пригодную для прокладки курса межзвездного корабля. Между тем расстояния - это ключ едва ли не к половине всей астрофизики. Как без них отличить близкую тусклую звезду от далекого, но яркого квазара? Только зная расстояние до объекта, можно оценить его энергетику, а отсюда прямая дорога к пониманию его физической природы.


Недавний пример неопределенности космических расстояний - проблема источников гамма-всплесков, коротких импульсов жесткого излучения, примерно раз в сутки приходящих на Землю с различных направлений. Первоначальные оценки их удаленности варьировались от сотен астрономических единиц (десятки световых часов) до сотен миллионов световых лет. Соответственно, и разброс в моделях также впечатлял - от аннигиляции комет из антивещества на окраинах Солнечной системы до сотрясающих всю Вселенную взрывов нейтронных звезд и рождения белых дыр. К середине 1990-х было предложено более сотни разных объяснений природы гамма-всплесков. Теперь же, когда мы смогли оценить расстояния до их источников, моделей осталось только две.

Но как измерить расстояние, если до предмета не дотянуться ни линейкой, ни лучом локатора? На помощь приходит метод триангуляции, широко применяемый в обычной земной геодезии. Выбираем отрезок известной длины - базу, измеряем из его концов углы, под которыми видна недоступная по тем или иным причинам точка, а затем простые тригонометрические формулы дают искомое расстояние. Когда мы переходим с одного конца базы на другой, видимое направление на точку меняется, она сдвигается на фоне далеких объектов. Это называется параллактическим смещением, или параллаксом. Величина его тем меньше, чем дальше объект, и тем больше, чем длиннее база.
Для измерения расстояний до звезд приходится брать максимально доступную астрономам базу, равную диаметру земной орбиты. Соответствующее параллактическое смещение звезд на небе (строго говоря, его половину) стали называть годичным параллаксом. Измерить его пытался еще Тихо Браге, которому пришлась не по душе идея Коперника о вращении Земли вокруг Солнца, и он решил ее проверить - параллаксы ведь еще и доказывают орбитальное движение Земли. Проведенные измерения имели впечатляющую для XVI века точность - около одной минуты дуги, но для измерения параллаксов этого было совершенно недостаточно, о чем сам Браге не догадывался и заключил, что система Коперника неверна.
Следующее наступление на параллакс предпринял в 1726 году англичанин Джеймс Брэдли, будущий директор Гринвичской обсерватории. Поначалу казалось, что ему улыбнулась удача: выбранная для наблюдений звезда гамма Дракона действительно в течение года колебалась вокруг своего среднего положения с размахом 20 секунд дуги. Однако направление этого смещения отличалось от ожидаемого для параллаксов, и Брэдли вскоре нашел правильное объяснение: скорость движения Земли по орбите складывается со скоростью света, идущего от звезды, и меняет его видимое направление. Точно так же капли дождя оставляют наклонные дорожки на стеклах автобуса. Это явление, получившее название годичной аберрации, стало первым прямым доказательством движения Земли вокруг Солнца, но не имело никакого отношения к параллаксам.

Лишь спустя столетие точность угломерных инструментов достигла необходимого уровня. В конце 30-х годов XIX века, по выражению Джона Гершеля, «стена, мешавшая проникновению в звездную Вселенную, была пробита почти одновременно в трех местах». В 1837 году Василий Яковлевич Струве (в то время директор Дерптской обсерватории, а позднее - Пулковской) опубликовал измеренный им параллакс Веги - 0,12 угловой секунды. На следующий год Фридрих Вильгельм Бессель сообщил, что параллакс звезды 61-й Лебедя составляет 0,3". А еще через год шотландский астроном Томас Гендерсон, работавший в Южном полушарии на мысе Доброй Надежды, измерил параллакс в системе альфа Центавра - 1,16". Правда, позднее выяснилось, что это значение завышено в 1,5 раза и на всем небе нет ни одной звезды с параллаксом больше 1 секунды дуги.
Для расстояний, измеренных параллактическим методом, была введена специальная единица длины - парсек (от параллактическая секунда, пк). В одном парсеке содержится 206 265 астрономических единиц, или 3,26 светового года. Именно с такой дистанции радиус земной орбиты (1 астрономическая единица = 149,5 миллиона километров) виден под углом в 1 секунду. Чтобы определить расстояние до звезды в парсеках, нужно разделить единицу на ее параллакс в секундах. Например, до самой близкой к нам звездной системы альфа Центавра 1/0,76 = 1,3 парсека, или 270 тысяч астрономических единиц. Тысяча парсек называется килопарсеком (кпк), миллион парсек - мегапарсеком (Мпк), миллиард - гигапарсеком (Гпк).
Измерение чрезвычайно малых углов требовало технической изощренности и огромного усердия (Бессель, например, обработал более 400 отдельных наблюдений 61-й Лебедя), однако после первого прорыва дело пошло легче. К 1890 году были измерены параллаксы уже трех десятков звезд, а когда в астрономии стала широко применяться фотография, точное измерение параллаксов и вовсе было поставлено на поток. Измерение параллаксов - единственный метод прямого определения расстояний до отдельных звезд. Но при наземных наблюдениях атмосферные помехи не позволяют параллактическим методом измерять расстояния свыше 100 пк. Для Вселенной это не очень большая величина. («Здесь недалеко, парсеков сто», - как говорил Громозека.) Там, где пасуют геометрические методы, на выручку приходят фотометрические.

ГЕОМЕТРИЧЕСКИЕ РЕКОРДЫ

В последние годы все чаще публикуются результаты измерения расстояний до очень компактных источников радиоизлучения - мазеров. Их излучение приходится на радиодиапазон, что позволяет наблюдать их на радиоинтерферометрах, способных измерять координаты объектов с микросекундной точностью, недостижимой в оптическом диапазоне, в котором наблюдаются звезды. Благодаря мазерам тригонометрические методы удается применять не только к далеким объектам нашей Галактики, но и к другим галактикам. Так, например, в 2005 году Андреас Брунталер (Andreas Brunthaler, Германия) и его коллеги определили расстояние до галактики М33 (730 кпк), сопоставив угловое смещение мазеров со скоростью вращения этой звездной системы. А годом позже Йе Зу (Ye Xu, КНР) с коллегами применили классический метод параллаксов к «местным» мазерным источникам, чтобы измерить расстояние (2 кпк) до одного из спиральных рукавов нашей Галактики. Пожалуй, дальше всех удалось продвинуться в 1999 году Дж. Хернстину (США) с коллегами. Отслеживая движение мазеров в аккреционном диске вокруг черной дыры в ядре активной галактики NGC 4258, астрономы определили, что эта система удалена от нас на расстояние 7,2 Мпк. На сегодняшний день это абсолютный рекорд геометрических методов.

ГЕОМЕТРИЧЕСКИЕ РЕКОРДЫ

СТАНДАРТНЫЕ СВЕЧИ АСТРОНОМОВ


Чем дальше от нас находится источник излучения, тем он тусклее. Если узнать истинную светимость объекта, то, сравнив ее с видимым блеском, можно найти расстояние. Вероятно, первым применил эту идею к измерению расстояний до звезд Гюйгенс. Ночью он наблюдал Сириус, а днем сравнивал его блеск с крохотным отверстием в экране, закрывавшем Солнце. Подобрав размер отверстия так, чтобы обе яркости совпадали, и сравнив угловые величины отверстия и солнечного диска, Гюйгенс заключил, что Сириус находится от нас в 27 664 раза дальше, чем Солнце. Это в 20 раз меньше реального расстояния. Отчасти ошибка объяснялась тем, что Сириус на самом деле намного ярче Солнца, а отчасти - трудностью сравнения блеска по памяти.
Прорыв в области фотометрических методов случился с приходом в астрономию фотографии. В начале XX века Обсерватория Гарвардского колледжа вела масштабную работу по определению блеска звезд по фотопластинкам. Особое внимание уделялось переменным звездам, блеск которых испытывает колебания. Изучая переменные звезды особого класса - цефеиды - в Малом Магеллановом Облаке, Генриетта Левитт заметила, что чем они ярче, тем больше период колебания их блеска: звезды с периодом в несколько десятков дней оказались примерно в 40 раз ярче звезд с периодом порядка суток.






МЕТОДЫ ИЗМЕРЕНИЯ КОСМИЧЕСКИХ РАССТОЯНИЙ


Поскольку все цефеиды Левитт находились в одной и той же звездной системе - Малом Магеллановом Облаке, - можно было считать, что они удалены от нас на одно и то же (пусть и неизвестное) расстояние. Значит, разница в их видимом блеске связана с реальными различиями в светимости. Оставалось определить геометрическим методом расстояние до одной цефеиды, чтобы прокалибровать всю зависимость и получить возможность, измерив период, определять истинную светимость любой цефеиды, а по ней расстояние до звезды и содержащей ее звездной системы.
Но, к сожалению, в окрестностях Земли нет цефеид. Ближайшая из них - Полярная звезда - удалена от Солнца, как мы теперь уже знаем, на 130 пк, то есть находится вне пределов досягаемости для наземных параллактических измерений. Это не позволяло перекинуть мостик напрямую от параллаксов к цефеидам, и астрономам пришлось возводить конструкцию, которую теперь образно называют лестницей расстояний.
Промежуточной ступенью на ней стали рассеянные звездные скопления, включающие от нескольких десятков до сотен звезд, связанных общим временем и местом рождения. Если нанести на график температуру и светимость всех звезд скопления, большая часть точек ляжет на одну наклонную линию (точнее, полосу), которая называется главной последовательностью. Температуру с высокой точностью определяют по спектру звезды, а светимость - по видимому блеску и расстоянию. Если расстояние неизвестно, на помощь опять приходит тот факт, что все звезды скопления удалены от нас практически одинаково, так что в пределах скопления видимый блеск все равно можно использовать в качестве меры светимости.
Поскольку звезды везде одинаковые, главные последовательности у всех скоплений должны совпадать. Различия связаны лишь с тем, что они находятся на разных расстояниях. Если определить геометрическим методом расстояние до одного из скоплений, то мы узнаем, как выглядит «настоящая» главная последовательность, и тогда, сравнив с ней данные по другим скоплениям, мы определим расстояния до них. Этот метод называется «подгонкой главной последовательности». Эталоном для него долгое время служили Плеяды и Гиады, расстояния до которых были определены методом групповых параллаксов.

К счастью для астрофизики, примерно в двух десятках рассеянных скоплений обнаружены цефеиды. Поэтому, измерив расстояния до этих скоплений с помощью подгонки главной последовательности, можно «дотянуть лестницу» и до цефеид, которые оказываются на ее третьей ступени.
В роли индикатора расстояний цефеиды очень удобны: их относительно много - они найдутся в любой галактике и даже в любом шаровом скоплении, а будучи звездами-гигантами, они достаточно ярки, чтобы измерять по ним межгалактические дистанции. Благодаря этому они заслужили много громких эпитетов, вроде «маяков Вселенной» или «верстовых столбов астрофизики». Цефеидная «линейка» протягивается до 20 Мпк - это примерно в сто раз больше размеров нашей Галактики. Дальше их уже не различить даже в мощнейшие современные инструменты, и, чтобы подняться на четвертую ступень лестницы расстояний, нужно что-то поярче.

К ОКРАИНАМ ВСЕЛЕННОЙ


Один из наиболее мощных внегалактических методов измерения расстояний основан на закономерности, известной как соотношение Талли - Фишера: чем ярче спиральная галактика, тем быстрее она вращается. Когда галактика видна с ребра или под значительным наклоном, половина ее вещества из-за вращения приближается к нам, а половина - удаляется, что приводит к расширению спектральных линий вследствие эффекта Доплера. По этому расширению определяют скорость вращения, по ней - светимость, а затем из сравнения с видимой яркостью - расстояние до галактики. И, конечно, для калибровки этого метода нужны галактики, расстояния до которых уже измерены по цефеидам. Метод Талли - Фишера весьма дальнобойный и охватывает галактики, удаленные от нас на сотни мегапарсек, но и у него есть предел, поскольку для слишком далеких и слабых галактик не получить достаточно качественных спектров.


В несколько большем диапазоне расстояний действует еще одна «стандартная свеча» - сверхновые типа Ia. Вспышки таких сверхновых представляют собой «однотипные» термоядерные взрывы белых карликов с массой чуть выше критической (1,4 массы Солнца). Поэтому у них нет причин сильно варьироваться по мощности. Наблюдения таких сверхновых в близких галактиках, расстояния до которых удается определить по цефеидам, как будто бы подтверждают это постоянство, и потому космические термоядерные взрывы широко применяются сейчас для определения расстояний. Они видны даже в миллиардах парсек от нас, но зато никогда не знаешь, расстояние до какой галактики удастся измерить, ведь заранее неизвестно, где именно вспыхнет очередная сверхновая.
Продвинуться еще дальше позволяет пока лишь один метод - красные смещения. Его история, как и история цефеид, начинается одновременно с XX веком. В 1915 году американец Весто Слайфер, изучая спектры галактик, заметил, что в большинстве из них линии смещены в красную сторону относительно «лабораторного» положения. В 1924 году немец Карл Виртц обратил внимание, что это смещение тем сильнее, чем меньше угловые размеры галактики. Однако свести эти данные в единую картину удалось только Эдвину Хабблу в 1929 году. Согласно эффекту Доплера красное смещение линий в спектре означает, что объект удаляется от нас. Сопоставив спектры галактик с расстояниями до них, определенными по цефеидам, Хаббл сформулировал закон: скорость удаления галактики пропорциональна расстоянию до нее. Коэффициент пропорциональности в этом соотношении получил название постоянной Хаббла.
Тем самым было открыто расширение Вселенной, а вместе с ним возможность определения расстояний до галактик по их спектрам, конечно, при условии, что постоянная Хаббла привязана к каким-то другим «линейкам». Сам Хаббл выполнил эту привязку с ошибкой почти на порядок, которую удалось исправить только в середине 1940-х годов, когда выяснилось, что цефеиды делятся на несколько типов с разными соотношениями «период - светимость». Калибровку выполнили заново с опорой на «классические» цефеиды, и только тогда значение постоянной Хаббла стало близким к современным оценкам: 50- 100 км/с на каждый мегапарсек расстояния до галактики.
Сейчас по красным смещениям определяют расстояния до галактик, удаленных от нас на тысячи мегапарсек. Правда, в мегапарсеках эти расстояния указывают только в популярных статьях. Дело в том, что они зависят от принятой в расчетах модели эволюции Вселенной, и к тому же в расширяющемся пространстве не вполне ясно, какое расстояние имеется в виду: то, на котором была галактика в момент испускания излучения, либо то, на котором она находится в момент его приема на Земле, или же расстояние, пройденное светом, на пути от исходной точки до конечной. Поэтому астрономы предпочитают указывать для далеких объектов только непосредственно наблюдаемую величину красного смещения, не переводя ее в мегапарсеки.

ИГРА В КОМАНДЕ

Геометрические методы измерения расстояний не исчерпываются годичным параллаксом, в котором видимые угловые смещения звезд сравниваются с перемещениями Земли по орбите. Еще один подход опирается на движение Солнца и звезд друг относительно друга. Представим себе звездное скопление, пролетающее мимо Солнца. По законам перспективы видимые траектории его звезд, как рельсы на горизонте, сходятся в одну точку - радиант. Его положение говорит о том, под каким углом к лучу зрения летит скопление. Зная этот угол, можно разложить движение звезд скопления на две компоненты - вдоль луча зрения и перпендикулярно ему по небесной сфере - и определить пропорцию между ними. Лучевую скорость звезд в километрах в секунду измеряют по эффекту Доплера и с учетом найденной пропорции вычисляют проекцию скорости на небосвод - тоже в километрах в секунду. Остается сравнить эти линейные скорости звезд с угловыми, определенными по результатам многолетних наблюдений, - и расстояние будет известно! Этот способ работает до нескольких сотен парсек, но применим только к звездным скоплениям и потому называется методом групповых параллаксов. Так были измерены расстояния до Гиад и Плеяд.

ИГРА В КОМАНДЕ


Красные смещения - это единственный на сегодня метод оценки «космологических» расстояний, сопоставимых с «размером Вселенной», и вместе с тем это, пожалуй, самая массовая техника. В июле 2007 года опубликован каталог красных смещений 77 418 767 галактик. Правда, при его создании использовалась несколько упрощенная автоматическая методика анализа спектров, и поэтому в некоторые значения могли вкрасться ошибки.

ВНИЗ ПО ЛЕСТНИЦЕ, ВЕДУЩЕЙ ВВЕРХ


Выстраивая нашу лестницу к окраинам Вселенной, мы умалчивали о фундаменте, на котором она покоится. Между тем метод параллаксов дает расстояние не в эталонных метрах, а в астрономических единицах, то есть в радиусах земной орбиты, величину которой тоже удалось определить далеко не сразу. Так что оглянемся назад и спустимся по лестнице космических расстояний на Землю.
Вероятно, первым удаленность Солнца попытался определить Аристарх Самосский, предложивший гелиоцентрическую систему мира за полторы тысячи лет до Коперника. У него получилось, что Солнце находится в 20 раз дальше от нас, чем Луна. Эта оценка, как мы теперь знаем, заниженная в 20 раз, продержалась вплоть до эпохи Кеплера. Тот хотя сам и не измерил астрономическую единицу, но уже отметил, что Солнце должно быть гораздо дальше, чем считал Аристарх (а за ним и все остальные астрономы).
Первую более или менее приемлемую оценку расстояния от Земли до Солнца получили Жан Доминик Кассини и Жан Рише. В 1672 году, во время противостояния Марса, они измерили его положение на фоне звезд одновременно из Парижа (Кассини) и Кайенны (Рише). Расстояние от Франции до Французской Гвианы послужило базой параллактического треугольника, из которого они определили расстояние до Марса, а затем по уравнениям небесной механики вычислили астрономическую единицу, получив значение 140 миллионов километров.

На протяжении следующих двух веков главным инструментом для определения масштабов Солнечной системы стали прохождения Венеры по диску Солнца. Наблюдая их одновременно из разных точек земного шара, можно вычислить расстояние от Земли до Венеры, а отсюда и все остальные расстояния в Солнечной системе. В XVIII-XIX веках это явление наблюдалось четырежды: в 1761, 1769, 1874 и 1882 годах. Эти наблюдения стали одними из первых международных научных проектов. Снаряжались масштабные экспедиции (английской экспедицией 1769 года руководил знаменитый Джеймс Кук), создавались специальные наблюдательные станции... И если в конце XVIII века Россия лишь предоставила французским ученым возможность наблюдать прохождение со своей территории (из Тобольска), то в 1874 и 1882 годах российские ученые уже принимали активное участие в исследованиях. К сожалению, исключительная сложность наблюдений привела к значительному разнобою в оценках астрономической единицы - примерно от 147 до 153 миллионов километров. Более надежное значение - 149,5 миллиона километров - было получено только на рубеже XIX-XX веков по наблюдениям астероидов. И, наконец, нужно учитывать, что результаты всех этих измерений опирались на знание длины базы, в роли которой при измерении астрономической единицы выступал радиус Земли. Так что в конечном итоге фундамент лестницы космических расстояний был заложен геодезистами.
Только во второй половине XX века в распоряжении ученых появились принципиально новые способы определения космических расстояний - лазерная и радиолокация. Они позволили в сотни тысяч раз повысить точность измерений в Солнечной системе. Погрешность радиолокации для Марса и Венеры составляет несколько метров, а расстояние до уголковых отражателей, установленных на Луне, измеряется с точностью до сантиметров. Принятое же на сегодня значение астрономической единицы составляет 149 597 870 691 метр.

ТРУДНАЯ СУДЬБА «ГИППАРХА»


Столь радикальный прогресс в измерении астрономической единицы по-новому поставил вопрос о расстояниях до звезд. Точность определения параллаксов ограничивает атмосфера Земли. Поэтому еще в 1960-х годах возникла идея вывести угломерный инструмент в космос. Реализовалась она в 1989 году с запуском европейского астрометрического спутника «Гиппарх». Это название - устоявшийся, хотя формально и не совсем правильный перевод английского названия HIPPARCOS, которое является сокращением от High Precision Parallax Collecting Satellite («спутник для сбора высокоточных параллаксов») и не совпадает с англоязычным же написанием имени знаменитого древнегреческого астронома - Hipparchus, автора первого звездного каталога.
Создатели спутника поставили перед собой очень амбициозную задачу: измерить параллаксы более 100 тысяч звезд с миллисекундной точностью, то есть «дотянуться» до звезд, находящихся в сотнях парсек от Земли. Предстояло уточнить расстояния до нескольких рассеянных звездных скоплений, в частности Гиад и Плеяд. Но главное, появлялась возможность «перепрыгнуть через ступеньку», непосредственно измерив расстояния до самих цефеид.
Экспедиция началась с неприятностей. Из-за сбоя в разгонном блоке «Гиппарх» не вышел на расчетную геостационарную орбиту и остался на промежуточной сильно вытянутой траектории. Специалистам Европейского космического агентства все же удалось справиться с ситуацией, и орбитальный астрометрический телескоп успешно проработал 4 года. Еще столько же продлилась обработка результатов, и в 1997 году в свет вышел звездный каталог с параллаксами и собственными движениями 118 218 светил, в числе которых было около двухсот цефеид.
К сожалению, в ряде вопросов желаемая ясность так и не наступила. Самым непонятным оказался результат для Плеяд - предполагалось, что «Гиппарх» уточнит расстояние, которое прежде оценивалось в 130-135 парсек, однако на практике оказалось, что «Гиппарх» его исправил, получив значение всего 118 парсек. Принятие нового значения потребовало бы корректировки как теории эволюции звезд, так и шкалы межгалактических расстояний. Это стало бы серьезной проблемой для астрофизики, и расстояние до Плеяд стали тщательно проверять. К 2004 году несколько групп независимыми методами получили оценки расстояния до скопления в диапазоне от 132 до 139 пк. Начали раздаваться обидные голоса с предположениями, что последствия вывода спутника на неверную орбиту все-таки не удалось окончательно устранить. Тем самым под вопрос ставились вообще все измеренные им параллаксы.
Команда «Гиппарха» была вынуждена признать, что результаты измерений в целом точны, но, возможно, нуждаются в повторной обработке. Дело в том, что в космической астрометрии параллаксы не измеряются непосредственно. Вместо этого «Гиппарх» на протяжении четырех лет раз за разом измерял углы между многочисленными парами звезд. Эти углы меняются как из-за параллактического смещения, так и вследствие собственных движений звезд в пространстве. Чтобы «вытащить» из наблюдений именно значения параллаксов, требуется довольно сложная математическая обработка. Вот ее-то и пришлось повторить. Новые результаты были опубликованы в конце сентября 2007 года, но пока еще неясно, насколько при этом улучшилось положение дел.

Но этим проблемы «Гиппарха» не исчерпываются. Определенные им параллаксы цефеид оказались недостаточно точными для уверенной калибровки соотношения «период-светимость». Тем самым спутнику не удалось решить и вторую стоявшую перед ним задачу. Поэтому сейчас в мире рассматривается несколько новых проектов космической астрометрии. Ближе всех к реализации стоит европейский проект «Гайа» (Gaia), запуск которого намечен на 2012 год. Его принцип действия такой же, как у «Гиппарха», - многократные измерения углов между парами звезд. Однако благодаря мощной оптике он сможет наблюдать значительно более тусклые объекты, а использование метода интерферометрии повысит точность измерения углов до десятков микросекунд дуги. Предполагается, что «Гайа» сможет измерять килопарсековые расстояния с ошибкой не более 20% и за несколько лет работы определит положения около миллиарда объектов. Тем самым будет построена трехмерная карта значительной части Галактики.
Вселенная Аристотеля заканчивалась в девяти расстояниях от Земли до Солнца. Коперник считал, что звезды расположены в 1 000 раз дальше, чем Солнце. Параллаксы отодвинули даже ближайшие звезды на световые годы. В самом начале XX века американский астроном Харлоу Шепли при помощи цефеид определил, что поперечник Галактики (которую он отождествлял со Вселенной) измеряется десятками тысяч световых лет, а благодаря Хабблу границы Вселенной расширились до нескольких гигапарсек. Насколько окончательно они закреплены?
Конечно, на каждой ступени лестницы расстояний возникают свои, большие или меньшие погрешности, но в целом масштабы Вселенной определены достаточно хорошо, проверены разными не зависящими друг от друга методами и складываются в единую согласованную картину. Так что современные границы Вселенной кажутся незыблемыми. Впрочем, это не означает, что в один прекрасный день мы не захотим измерить расстояние от нее до какой-нибудь соседней Вселенной!