Примеры на свойства логарифмов. Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)

1.1. Определение степени для целого показателя степени

X 1 = X
X 2 = X * X
X 3 = X * X * X

X N = X * X * … * X — N раз

1.2. Нулевая степень.

По определению принято считать, что нулевая степень любого числа равна 1:

1.3. Отрицательная степень.

X -N = 1/X N

1.4. Дробная степень, корень.

X 1/N = корень степени N из Х.

Например: X 1/2 = √X.

1.5. Формула сложения степеней.

X (N+M) = X N *X M

1.6.Формула вычитания степеней.

X (N-M) = X N /X M

1.7. Формула умножения степеней.

X N*M = (X N) M

1.8. Формула возведения дроби в степень.

(X/Y) N = X N /Y N

2. Число e.

Значение числа e равно следующему пределу:

E = lim(1+1/N), при N → ∞.

С точностью 17 знаков число e равно 2.71828182845904512.

3. Равенство Эйлера.

Это равенство связывает пять чисел, играющих особую роль в математике: 0, 1, число e, число пи, мнимую единицу.

E (i*пи) + 1 = 0

4. Экспоненциальная функция exp (x)

exp(x) = e x

5. Производная экспоненциальной функции

Экспоненциальная функция обладает замечательным свойством: производная функции равна самой экспоненциальной функции:

(exp(x))" = exp(x)

6. Логарифм.

6.1. Определение функции логарифм

Если x = b y , то логарифмом называется функция

Y = Log b (x).

Логарифм показывает в какую степень надо возвести число - основание логарифма (b), чтобы получить заданное число (X). Функция логарифм определена для X больше нуля.

Например: Log 10 (100) = 2.

6.2. Десятичный логарифм

Это логарифм по основанию 10:

Y = Log 10 (x) .

Обозначается Log(x): Log(x) = Log 10 (x).

Пример использования десятичного логарифма — децибел .

6.3. Децибел

Пункт выделен в отдельную страницу Децибел

6.4. Двоичный логарифм

Это логарифм по основанию 2:

Y = Log 2 (x).

Обозначается Lg(x): Lg(x) = Log 2 (X)

6.5. Натуральный логарифм

Это логарифм по основанию e:

Y = Log e (x) .

Обозначается Ln(x): Ln(x) = Log e (X)
Натуральный логарифм — обратная функция к экспоненциальной функции exp (X).

6.6. Характерные точки

Log a (1) = 0
Log a (a) = 1

6.7. Формула логарифма произведения

Log a (x*y) = Log a (x)+Log a (y)

6.8. Формула логарифма частного

Log a (x/y) = Log a (x)-Log a (y)

6.9. Формула логарифма степени

Log a (x y) = y*Log a (x)

6.10. Формула преобразования к логарифму с другим основанием

Log b (x) = (Log a (x))/Log a (b)

Пример:

Log 2 (8) = Log 10 (8)/Log 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. Формулы полезные в жизни

Часто возникают задачи пересчета объема в площадь или в длину и обратная задача -- пересчет площади в объем. Например, доски продаются кубами (кубометрами), а нам требуется рассчитать какую площадь стены можно обшить досками содержащимися в определенном объеме, см. расчет досок, сколько досок в кубе . Или, известны размеры стены, надо рассчитать число кирпичей, см. расчет кирпича .


Разрешается использовать материалы сайта при условии установки активной ссылки на источник.

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Логарифмы и правила действий с ними достаточно емкие и простые. Следовательно, разобраться в данной теме вам не составит труда. После того как вы узнаете все правила натуральных логарифмов, любая задача решится самостоятельно. Первое знакомство с этой темой может показаться скучным и бессмысленным, но именно при помощи логарифмов решились многие проблемы математиков XVI века. "О чем это?" - подумали вы. Прочтите статью до конца и узнаете, что этот раздел "царицы наук" может быть интересен не только математикам, ученым точных наук, но и простым ученикам средних школ.

Определение логарифма

Начнем с определения логарифма. Как гласят многие учебники: логарифмом числа b по основанию a (logab) является некое число с, для которого выполняется такое равенство: b=ac. То есть, говоря простыми словами, логарифм - определенная степень, в которую возводим основание, чтобы получить данное число. Но важно помнить, что логарифм вида logab имеет смысл только при: a>0; a - число, отличное от 1; b>0, следовательно, делаем вывод, что логарифм можно найти только у положительных чисел.

Классификация логарифмов по основанию

Логарифмы могут быть с любым положительным числом в основании. Но также существует два вида: натуральный и десятичный логарифмы.

  • Натуральный логарифм - логарифм с основанием е (е - число Эйлера, численно приблизительно равняется 2,7, иррациональное число, которое ввели для показательной функции y = ex), обозначается как ln a = logea;
  • Десятичный логарифм - логарифм с основанием 10, то есть log10a = lg a.

Основные правила логарифмов

Для начала нужно познакомиться с основным логарифмическим тождеством: alogab=b, далее следуют два таких основных правила:

  • loga1 = 0 - так как любое число в нулевой степени равно 1;
  • logaa = 1.

Благодаря открытию логарифма для нас не составит труда решить абсолютно любое показательно уравнение, ответ которого нельзя выразить натуральным числом, а только иррациональным. Например: 5х = 9, х = log59 (так как натурального х для данного уравнения не существует).

Действия с логарифмами

  • loga(x · y) = logax+ logay - чтобы найти логарифм произведения, нужно сложить логарифмы сомножителей. Обратите внимание на то, что основания логарифмов одинаковы. Если записать это в обратном порядке, то получим правило сложения логарифмов.
  • loga xy = logax - logay - чтобы найти логарифм частного, нужно найти разность логарифмов делимого и делителя. Обратите внимание: основания у логарифмов одинаковы. При записи в обратном порядке получаем правило вычитания логарифмов.

  • logakxp = (p/k)*logax - таким образом, если в аргументе и основании логарифма стоят степени, то их можно выносить за знак логарифма.
  • logax = logac xc - частный случай предыдущего правила, когда показатели степеней равны, их можно сократить.
  • logax = (logbx)(logba) - так называемый модуль перехода, процедура приведения логарифма к другому основанию.
  • logax = 1/logxa - частный случай перехода, смена мест основания и данного числа. Все выражение, образно говоря, переворачивается, и логарифм с новым основанием оказывается в знаменателе.

История возникновения логарифмов

В XVI веке возникла необходимость проведения многих приближенных вычислений для решения практических задач, главным образом, в астрономии (например, определение положения судна по Солнцу или звездам).


Эта потребность быстро росла и значительную трудность создавало умножение и деление многозначных чисел. И ученый-математик Непер при тригонометрических расчетах решил заменить трудоемкое умножение на обыкновенное сложение, сопоставив для этого некоторые прогрессии. Тогда деление, аналогично, заменяется на процедуру попроще и надежнее - вычитание, а дабы извлечь корень n-ой степени, нужно разделить логарифм подкоренного выражения на n. Решение такой нелегкой задачи в математике явно отображало цели Непера в науке. Вот как он писал об этом в начале своей книги "Рабдология":

Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики.

Название логарифма предложил сам Непер, он был получен путем совмещения греческих слов, которые в сочетании означали “число отношений”.

Основание логарифма ввел Спейдел. Его заимствовал Эйлер из теории о степенях и перенес в теорию логарифмов. Понятие логарифмирования стало известным благодаря Коппе в XIX веке. А использование натуральных и десятичных логарифмов, а также их обозначения появились благодаря Коши.

В 1614 году Джон Непер издал на латыни сочинение "Описание удивительной таблица логарифмов". Там было изложено краткое описание логарифмов, правил и их свойств. Так термин "логарифм" утвердился в точных науках.

Операцию логарифмирования и первое упоминание о ней появилось благодаря Валлису и Иоганну Бернулли, а окончательно установлена она была Эйлером в XVIII веке.


Именно заслуга Эйлера в распространении логарифмической функции вида y = logax на комплексную область. В первой половине XVIII века вышла его книга "Введение в анализ бесконечных", где были современные определения показательной и логарифмической функций.

Логарифмическая функция

Функция вида y = logах (имеет смысл, только если: а > 0, а ≠ 1).

  • Логарифмическая функция определяется множеством всех положительных чисел, так как запись logах существует только при условии - х > 0;.
  • Данная функция может принимать абсолютно все значения из множества R (действительных чисел). Так как у всякого действительного числа b есть положительное x, чтобы выполнялось равенство logaх = b, то есть, это уравнение имеет корень - х = аb (следует из того, что logaab= b).
  • Функция возрастает на промежутке a>0, а убывает на промежутке 0Если а>0, то функция принимает положительные значения при х>1.

Следует помнить, что любые графики логарифмической функции у = logах имеют одну стационарную точку (1;0), так как logа 1 = 0. Это хорошо видно на иллюстрации графика ниже.


Как видим на изображениях, функция не имеет четности или нечетности, не имеет наибольших или наименьших значений, не ограничена сверху или снизу.

Логарифмическая функция y = logаx и показательная функция y = aх, где (а>0, а≠1), взаимно обратные. Это можно видеть на изображении их графиков.

Решение задач с логарифмами

Обычно решение задачи, содержащей логарифмы, основано на преобразовании их в стандартный вид или же направлено на упрощение выражений под знаком логарифма. Или же стоит переводить обычные натуральные числа в логарифмы с нужным основанием, проводить дальнейшие операции по упрощению выражения.

Есть некие тонкости, которые не стоит забывать:

  • При решении неравенств, когда обе части стоят под логарифмами по правилу с одним основанием, не спешите "отбрасывать" знак логарифма. Помните о промежутках монотонности логарифмической функции. Так как, если основание больше 1 (случай, когда функция возрастает) - знак неравенства останется без изменений, но когда основание больше 0 и меньше 1 (случай, когда функция убывает) - знак неравенства изменится на противоположный;
  • Не забывайте определения логарифма: logах = b, а>0, а≠1 и х>0, чтобы не потерять корней из-за неучтенной области допустимых значений. ОДЗ (область допустимых значений) существует практически для всех сложных функций.

Это банальные, но масштабные ошибки, с которыми столкнулись многие на пути поиска верного ответа для задания. Правил решения логарифмов не так уж и много, поэтому эта тема проще, чем другие и последующие, но в ней стоит хорошо разобраться.

Вывод


Данная тема с первого взгляда может показаться сложной и громоздкой, но, исследуя ее глубже и глубже, начинаешь понимать, что тема просто заканчивается, а сложностей так ничего и не вызвало. Мы рассмотрели все свойства, правила и даже ошибки, касающиеся темы логарифмов. Успехов в обучении!

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения .

Сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов .

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается log a b) - это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения log a b = x, что равносильно a x = b, поэтому log a a x = x.

Логарифмы , примеры:

log 2 8 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм - это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log 10 100 = 2, т.к. 10 2 = 100

Натуральный логарифм - также обычный логарифм логарифм, но уже с основанием е (е = 2,71828... - иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

  • Основное логарифмическое тождество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм произведения равен сумме логарифмов
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Логарифм частного равен разности логарифмов
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства степени логарифмируемого числа и основания логарифма

    Показатель степени логарифмируемого числа log a b m = mlog a b

    Показатель степени основания логарифма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    если m = n, получим log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Переход к новому основанию
    log a b = log c b/log c a,

    если c = b, получим log b b = 1

    тогда log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: " ". Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.