Что такое количество теплоты формула и определение. Количество теплоты. Удельная теплоемкость

Изменить внутреннюю энергию газа в цилиндре можно не только совершая работу, но и нагревая газ (рис. 43). Если закрепить поршень, то объем газа не будет изменяться, но температура, а следовательно, и внутренняя энергия будут возрастать.

Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.

Энергию, переданную телу в результате теплообмена, называют количеством теплоты. Количеством теплоты называют также энергию, которую тело отдает в процессе теплообмена.

Молекулярная картина теплообмена. При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с более быстро движущимися молекулами горячего тела. В результате кинетические энергии

молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую: часть внутренней энергии горячего тела передается холодному телу.

Количество теплоты и теплоемкость. Из курса физики VII класса известно, что для нагревания тела массой от температуры до температуры необходимо сообщить ему количество теплоты

При остывании тела, его конечная температура меньше начальной и количество теплоты, отдаваемое телом, отрицательно.

Коэффициент с в формуле (4.5) называют удельной теплоемкостью. Удельная теплоемкость - это количество теплоты, которое получает или отдает 1 кг вещества при изменении его температуры на 1 К-

Удельную теплоемкость выражают в джоулях, деленных на килограмм, умноженный на кельвин. Различным телам требуется неодинаковое количество энергии для увеличения температуры на I К. Так, удельная теплоемкость воды а меди

Удельная теплоемкость зависит не только от свойств вещества, но и от того, при каком процессе осуществляется теплопередача Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно будет передать большее количество теплоты, чем для нагревания его при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их удельные теплоемкости при постоянном объеме и постоянном давлении мало различаются.

Удельная теплота парообразования. Для превращения жидкости в пар необходима передача ей определенного количества теплоты. Температура жидкости при этом превращении не меняется. Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии. Ведь среднее расстояние между молекулами газа во много раз больше, чем между молекулами жидкости. Кроме того, увеличение объема при переходе вещества из жидкого состояния в газообразное требует совершения работы против сил внешнего да вления.

Количество теплоты, необходимое для превращения при постоянной температуре 1 кг жидкости в пар, называют

удельной теплотой парообразования. Обозначают эту величину буквой и выражают в джоулях на килограмм

Очень велика удельная теплота парообразования воды: при температуре 100°С. У других жидкостей (спирт, эфир, ртуть, керосин и др.) удельная теплота парообразования меньше в 3-10 раз.

Для превращения в пар жидкости массой требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты:

Удельная теплота плавления. При плавлении кристаллического тела вся подводимая к нему теплота идет на увеличение потенциальной энергии молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Количество теплоты А, необходимое для превращения 1 кг кристаллического вещества при температуре плавления в жидкость той же температуры, называют удельной теплотой плавления.

При кристаллизации I кг вещества выделяется точно такое же количество теплоты. Удельная теплота плавления льда довольно велика:

Для того чтобы расплавить кристаллическое тело массой необходимо количество теплоты, равное:

Количество теплоты, выделяемое при кристаллизации тела, равно:

1. Что называют количеством теплоты? 2. От чего зависит удельная теплоемкость веществ? 3. Что называют удельной теплотой парообразования? 4. Что называют удельной теплотой плавления? 5. В каких случаях количество переданной теплоты отрицательно?

«Физика - 10 класс»

В каких процессах происходят агрегатные превращения вещества?
Как можно изменить агрегатное состояние вещества?

Изменить внутреннюю энергию любого тела можно, совершая работу, нагревая или, наоборот, охлаждая его.
Так, при ковке металла совершается работа, и он разогревается, в то же время металл можно разогреть над горящим пламенем.

Также если закрепить поршень (рис. 13.5), то объём газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Внутренняя энергия может увеличиваться и уменьшаться, поэтому количество теплоты может быть положительным и отрицательным.

Процесс передачи энергии от одного тела другому без совершения работы называют теплообменом .

Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты .


Молекулярная картина теплообмена.


При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии более нагретого тела передаётся менее нагретому телу.


Количество теплоты и теплоёмкость.

Вам уже известно, что для нагревания тела массой т от температуры t 1 до температуры t 2 необходимо передать ему количество теплоты:

Q = cm(t 2 - t 1) = cm Δt. (13.5)

При остывании тела его конечная температура t 2 оказывается меньше начальной температуры t 1 и количество теплоты, отдаваемой телом, отрицательно.

Коэффициент с в формуле (13.5) называют удельной теплоёмкостью вещества.

Удельная теплоёмкость - это величина, численно равная количеству теплоты, которую получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К.

Удельная теплоёмкость газов зависит от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объёме, когда газ будет только нагреваться.

Жидкие и твёрдые тела расширяются при нагревании незначительно. Их удельные теплоёмкости при постоянном объёме и постоянном давлении мало различаются.


Удельная теплота парообразования.


Для превращения жидкости в пар в процессе кипения необходима передача ей определённого количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведёт к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.

Величину, численно равную количеству теплоты, необходимой для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования .

Процесс испарения жидкости происходит при любой температуре, при этом жидкость покидают самые быстрые молекулы, и она при испарении охлаждается. Удельная теплота испарения равна удельной теплоте парообразования.

Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).

Очень велика удельная теплота парообразования воды: r Н20 = 2,256 10 6 Дж/кг при температуре 100 °С. У других жидкостей, например у спирта, эфира, ртути, керосина, удельная теплота парообразования меньше в 3-10 раз, чем у воды.

Для превращения жидкости массой m в пар требуется количество теплоты, равное:

Q п = rm. (13.6)

При конденсации пара происходит выделение такого же количества теплоты:

Q к = -rm. (13.7)


Удельная теплота плавления.


При плавлении кристаллического тела всё подводимое к нему тепло идёт на увеличение потенциальной энергии взаимодействия молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Величину, численно равную количеству теплоты, необходимой для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления и обозначают буквой λ.

При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.

Удельная теплота плавления льда довольно велика: 3,34 10 5 Дж/кг.

«Если бы лёд не обладал большой теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передаётся льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега». Р. Блек, XVIII в.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Q пл = λm. (13.8)

Количество теплоты, выделяемой при кристаллизации тела, равно:

Q кр = -λm (13.9)


Уравнение теплового баланса.


Рассмотрим теплообмен внутри системы, состоящей из нескольких тел, имеющих первоначально различные температуры, например теплообмен между водой в сосуде и опущенным в воду горячим железным шариком. Согласно закону сохранения энергии количество теплоты, отданной одним телом, численно равно количеству теплоты, полученной другим.

Отданное количество теплоты считается отрицательным, полученное количество теплоты - положительным. Поэтому суммарное количество теплоты Q1 + Q2 = 0.

Если в изолированной системе происходит теплообмен между несколькими телами, то

Q 1 + Q 2 + Q 3 + ... = 0. (13.10)

Уравнение (13.10) называется уравнением теплового баланса .

Здесь Q 1 Q 2 , Q 3 - количества теплоты, полученной или отданной телами. Эти количества теплоты выражаются формулой (13.5) или формулами (13.6)-(13.9), если в процессе теплообмена происходят различные фазовые превращения вещества (плавление, кристаллизация, парообразование, конденсация).

Обучающая цель: Ввести понятия количества теплоты и удельной теплоемкости.

Развивающая цель: Воспитывать внимательность; учить думать, делать выводы.

1. Актуализация темы

2. Объяснение нового материала. 50 мин.

Вам уже известно, что внутренняя энергия тела может изменяться как путем совершения работы, так и путем теплопередачи (без совершения работы).

Энергия, которую получает или теряет тело при теплопередаче, называют количеством теплоты. (запись в тетрадь)

Значит и единицы измерения количества теплоты тоже Джоули (Дж) .

Проводим опыт: два стакана в одном 300 г. воды, а в другом 150 г. и железный цилиндр массой 150 г. Оба стакана ставятся на одну и ту же плитку. Через некоторое время термометры покажут, что вода в сосуде, в котором находится тело, нагревается быстрее.

Это означает, что для нагревания 150 г. железо требуется меньше количество теплоты, чем для нагревания 150 г. воды.

Количество теплоты, переданное телу, зависит от рода вещества, из которого изготовлено тело. (запись в тетрадь)

Предлагаем вопрос: одинаковое ли количество теплоты требуется для нагревания до одной и той же температуры тел равной массы, но состоящих из разных веществ?

Проводим опыт с прибором Тиндаля по определению удельной теплоемкости.

Делаем вывод: тела из разных веществ, но одинаковой массы, отдают при охлаждении и требуют при нагревании на одно и то же число градусов разное количество теплоты.

Делаем выводы:

1. Для нагревания до одной и той же температуры тел равной массы, состоящих из разных веществ, требуется различное количество теплоты.

2.Тела равной массы, состоящие из разных веществ и нагретые до одинаковой температуры. При охлаждении на одно и тоже число градусов отдают различное количество теплоты.

Делаем заключение, что количество теплоты, необходимое для нагревания на один градус единицы масс разных веществ, будет различным.

Даем определение удельной теплоемкости.

Физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 градус, называется удельной теплоемкостью вещества.

Вводим единицу измерения удельной теплоемкости: 1Дж/кг*градус.

Физический смысл термина: удельная теплоемкость показывает, на какую величину изменяется внутренняя энергия 1г (кг.) вещества при нагревании или охлаждении его на 1 градус.

Рассматриваем таблицу удельных теплоемкостей некоторых веществ.

Решаем задачу аналитическим путем

Какое количество теплоты требуется, чтобы нагреть стакан воды (200 г.) от 20 0 до 70 0 С.

Для нагревания 1 г. на 1 г. Требуется - 4,2 Дж.

А для нагревания 200 г. на 1 г. потребуется в 200 больше - 200*4,2 Дж.

А для нагревания 200 г. на (70 0 -20 0) потребуется еще в (70-20) больше - 200 * (70-20) *4,2 Дж

Подставляя данные, получим Q = 200 * 50*4,2 Дж = 42000 Дж.

Запишем полученную формулу через соответствующие величины

4. От чего зависит количество теплоты, полученное телом при нагревании?

Обращаем внимании, что количество теплоты, необходимое для нагревания какого либо тела, пропорционально массе тела и изменению его температуры.,

Имеются два цилиндра одинаковой массы: железный и латунный. Одинаковое ли количество теплоты необходимо, чтобы нагреть их на одно и то же число градусов? Почему?

Какое количество теплоты необходимо, чтобы нагреть 250 г. воды от 20 о до 60 0 С.

Какая связь между калорией и джоулем?

Калория – это количество теплоты, которое необходимо для нагревания 1 г воды на 1 градус.

1 кал = 4.19=4.2 Дж

1ккал=1000кал

1ккал=4190Дж=4200Дж

3. Решение задач. 28 мин.

Если прогретые в кипящей воде цилиндры из свинца, олова и стали массой 1 кг поставить на лед, то они охладятся, и часть льда под ними растает. Как изменится внутренняя энергия цилиндров? Под каким из цилиндров растает больше льда, под каким – меньше?

Нагретый камень массой 5 кг. Охлаждаясь в воде на 1 градус, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня

При закалке зубила его сначала нагрели до 650 0 , потом опустили в масло, где оно стыло до 50 0 С. Какое при этом выделилось количество теплоты, если его масса 500 гр.

Какое количество теплоты пошло на нагревание от 20 0 до 1220 0 С. стальной заготовки для коленчатого вала компрессора массой 35 кг.

Самостоятельная работа

Какой вид теплопередачи?

Учащиеся заполняют таблицу.

  1. Воздух в комнате нагревается через стены.
  2. Через открытое окно, в которое входит теплый воздух.
  3. Через стекло, которое пропускает лучи солнца.
  4. Земля нагревается лучами солнца.
  5. Жидкость нагревается на плите.
  6. Стальная ложка нагревается от чая.
  7. Воздух нагревается от свечи.
  8. Газ двигается около тепловыделяющих деталей машины.
  9. Нагревание ствола пулемета.
  10. Кипение молока.

5. Домашнее задание: Перышкин А.В. “Физика 8” § §7, 8; сборник задач 7-8 Лукашик В.И. №№778-780, 792,793 2 мин.

Что быстрее нагреется на плите - чайник или ведро воды? Ответ очевиден - чайник. Тогда второй вопрос - почему?

Ответ не менее очевиден - потому что масса воды в чайнике меньше. Отлично. А теперь вы можете проделать самостоятельно самый настоящий физический опыт в домашних условиях. Для этого вам понадобится две одинаковые небольшие кастрюльки, равное количество воды и растительного масла, например, по пол-литра и плита. На одинаковый огонь ставите кастрюльки с маслом и водой. А теперь просто наблюдайте, что быстрее будет нагреваться. Если есть градусник для жидкостей, можно применить его, если нет, можно просто пробовать температуру время от времени пальцем, только осторожно, чтобы не обжечься. В любом случае вы вскоре убедитесь, что масло нагревается значительно быстрее воды. И еще один вопросик, который тоже можно реализовать в виде опыта. Что быстрее закипит - теплая вода или холодная? Все снова очевидно - теплая будет на финише первой. К чему все эти странные вопросы и опыты? К тому, чтобы определить физическую величину, называемую «количеством теплоты».

Количество теплоты

Количество теплоты - это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании - поглощать. А ответы на наши вопросы показали нам, от чего зависит количество теплоты? Во-первых, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус. Во-вторых, количество теплоты, необходимое для нагревания тела, зависит от того вещества, из которого оно состоит, то есть от рода вещества. И в-третьих, разность температур тела до и после теплопередачи также важна для наших расчетов. Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:

где Q - количество теплоты,
m - масса тела,
(t_2-t_1) - разность между начальной и конечной температурами тела,
c - удельная теплоемкость вещества, находится из соответствующих таблиц.

По этой формуле можно произвести расчет количества теплоты, которое необходимо, чтобы нагреть любое тело или которое это тело выделит при остывании.

Измеряется количество теплоты в джоулях (1 Дж), как и всякий вид энергии. Однако, величину эту ввели не так давно, а измерять количество теплоты люди начали намного раньше. И пользовались они единицей, которая широко используется и в наше время - калория (1 кал). 1 калория - это такое количество теплоты, которое потребуется для нагреванияь 1 грамма воды на 1 градус Цельсия. Руководствуясь этими данными, любители подсчитывать калории в съедаемой пище, могут ради интереса подсчитать, сколько литров воды можно вскипятить той энергией, которую они потребляют с едой в течение дня.

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q .

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: = = = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c .

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.


Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.