Что такое атом в биологии. Квантовые числа. Принцип Паули. Правила Клечковского. Что означает это слово

Большинство из нас проходило тему атома в школе, на уроке по физике. Если же все-таки вы забыли, из чего состоит атом или только начинаете проходить эту тему, данная статья именно для вас.

Что такое атом

Чтобы понять, из чего состоит атом, прежде всего необходимо понять, что он из себя представляет. Общепринятым тезисом в школьной программе по физике является то, что атом – наименьшая частица какого-либо химического элемента. Таким образом, атомы есть во всем, что нас окружает. Будь-то одушевленный или неодушевленный предмет, на низших физиологических и химических слоях, оно состоит из атомов.

Атомы – часть молекулы. Несмотря на это убеждение, существую элементы, которые меньше атомов, например кварки. Тему кварков не затрагивают ни в школе, ни в университетах (за исключением частных случаев). Кварк – химический элемент, который не имеет внутренней структуры, т.е. по своему строению намного легче, чем атом. На данный момент науке известно 6 видов кварков.

Из чего состоит атом?

Все окружающие нас предметы, как уже было сказано, состоят из чего-то. В комнате стол и два стула. Каждый предмет интерьера, в свою очередь, сделан из какого-то материала. В данном случае – из дерева. Дерево состоит из молекул, а эти молекулы – из атомов. И таких примеров можно привести бесконечное множество. Но из чего состоит сам атом?

Атом состоит из ядра, в котором находятся протоны и нейтроны. Протоны – положительно заряженные частицы. Нейтроны же, что вытекает из названия, нейтрально заряжены, т.е. не имеют заряда. Вокруг ядра атома находится поле (электрическое облако), в котором передвигаются электроны (отрицательно заряженные частицы). Число электронов и протонов может отличаться друг от друга. Именно это отличие является ключевым в химии, когда изучается вопрос принадлежности к какому-то веществу.

Атом, у которого число вышеупомянутых частиц отличается, называется ионом. Как вы уже могли догадаться, ион может быть отрицательным и положительным. Отрицательный он в том случае, если количество электронов превосходит количество протонов. И наоборот, если протонов больше – ион будет положительным.


Атом в представлении древних мыслителей и ученых

Существует несколько весьма интересных предположений об атоме. Ниже будет приведен список:

  • Предположение Демокрита. Демокрит предполагал, что свойство вещества зависит от формы его атома. Таким образом, если что-то имеет свойство жидкости, то это связанно именно с тем, что атомы, из которых эта жидкость состоит – гладкие. Исходя из логики Демокрита, атомы воды и, например, молока – схожи.
  • Планетарные предположения. В 20 веке некоторыми учеными были представлены предположения, что атом – есть подобие планет. Одно из таких предположений гласило следующее: на подобии планеты Сатурн, у атома тоже есть кольца вокруг ядра, по которым передвигаются электроны (ядро сравнивается с самой планетой, а электрическое облако – с кольцами Сатурна). Несмотря на объективную схожесть с доказанной теорией, эту версию опровергли. Схожим было предположение Бора-Резерфорда, которое в последствии также было опровергнуто.


Несмотря на это, можно спокойно сказать, что Резерфорд дал большой скачок к пониманию реальной сути атома. Он был прав, когда говорил что атом схож с ядром, которое само по себе положительно, а вкруг него передвигаются атомы. Единственная ошибка его модели это то, что электроны, которые находятся вокруг атома, не передвигаются по какому-то конкретному направлению. Их движение хаотично. Это было доказано и вошло в науку под названием квантовомеханической модели.

ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

Возьми любой предмет, ну, хотя бы ложку. Положи её - лежит спокойно, не шелохнётся. Прикоснись-холодный неподвижный металл.

А в действительности ложка, как и всё вокруг нас, состоит из ничтожных по размерам частиц - атомов, между которыми- большие промежутки. Частицы непрестанно покачиваются, колеблются.

Почему же ложка твёрдая, если атомы в ней расположены свободно и всё время движутся? Дело в том, что они особыми силами как бы накрепко привязаны друг к другу. А промежутки между ними, хоть и намного больше самих атомов, всё же ничтожно малы, и мы не можем их заметить.

Атомы бывают разными - в природе существует 92 сорта атомов. Из них построено всё, что есть на свете, как из 32 букв - все слова русского языка. Ещё 12 сортов атомов учёные создали искусственно в своих .

О существовании атомов люди догадывались давно. Больше двух тысяч лет назад в древней Греции жил великий учёный Демокрит, который считал, что весь мир состоит из мельчайших частиц. Он называл их «атомос», что по-гречески значит «неделимые».

Много времени прошло, пока учёные доказали, что атомы действительно существуют. Это случилось в конце прошлого века. А затем выяснилось, что само название их - ошибка. Никакие они не неделимые: атом состоит из ещё более мелких частичек. Учёные называют их элементарными частицами.

Вот художник нарисовал атом. В середине- ядро, вокруг которого, как планеты вокруг Солнца, движутся крошечные шарики - . Ядро тоже не сплошное. Оно состоит из ядерных частиц- протонов и нейтронов.

Так думали ещё совсем недавно. Но потом стало ясно, что атомные частицы не похожи на шарики. Оказалось, что атом устроен по-особому. Уж если пытаться представить себе, как выглядят частицы, то можно сказать, что электрон подобен облачку. Такие облачка окружают ядро слоями. И ядерные частицы - это тоже своеобразные облачка.

У разных сортов атомов разное количество электронов, протонов, нейтронов. От этого и зависят свойства атомов.

Атом разделить просто. Электроны легко отрываются от ядер и ведут самостоятельную жизнь. Например, электрический ток в проводе - это движение таких самостоятельных электронов.

А вот ядро чрезвычайно прочное. Протоны и нейтроны в нём крепко связаны между собой особыми силами. Поэтому разбить ядро очень трудно. Но люди научились это делать и получили . Научились изменять количество частиц в ядре и превращать таким образом одни атомы в другие и даже создавать новые атомы.

Изучать атом трудно: от учёных требуется необычайная изобретательность и находчивость. Ведь даже его размеры трудно себе представить: в не видимом глазом микробе - миллиарды атомов, больше, чем людей на Земле. И всё же учёные добиваются своего, они сумели измерить, сравнить между собой веса всех атомов и составляющих атом частиц, выяснили, что протон или нейтрон почти в две тысячи раз массивнее электрона, открыли и продолжают открывать многие другие атомные секреты.

Атом (от греч. «неделимый») - некогда мельчайшая частица вещества микроскопических размеров, наименьшая часть химического элемента, которая носит его свойства. Составляющие атома - протоны, нейтроны, электроны - этих свойств уже не имеют и образуют их в совокупности. Ковалентные атомы образуют молекулы. Ученые изучают особенности атома, и хотя они уже довольно неплохо изучены, не упускают возможности найти что-то новое - в частности, в области создания новых материалов и новых атомов (продолжающих таблицу Менделеева). 99,9% массы атома приходится на ядро.

Ученые из Университета Рэдбуда обнаружили новый механизм магнитного хранения информации в мельчайшей единице вещества: одном атоме. Несмотря на то, что доказательство принципа было продемонстрировано при очень низких температурах, этот механизм обещает функционировать и при комнатной температуре. Таким образом, можно будет хранить в тысячи раз больше информации, чем сейчас на жестких дисках. Результаты работы были опубликованы в Nature Communications.